Anionic Redox Activities Boosted by Aluminum Doping in Layered Sodium-Ion Battery Electrode
Chen Cheng
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorManling Ding
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorTianran Yan
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorJinsen Jiang
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorJing Mao
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorXuefei Feng
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorTing-Shan Chan
National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
Search for more papers by this authorCorresponding Author
Ning Li
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Liang Zhang
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChen Cheng
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorManling Ding
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorTianran Yan
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorJinsen Jiang
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 China
Search for more papers by this authorJing Mao
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorXuefei Feng
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorTing-Shan Chan
National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
Search for more papers by this authorCorresponding Author
Ning Li
Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120 China
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Liang Zhang
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Sodium-ion batteries (SIBs) have attracted widespread attention for large-scale energy storage, but one major drawback, i.e., the limited capacity of cathode materials, impedes their practical applications. Oxygen redox reactions in layered oxide cathodes are proven to contribute additionally high specific capacity, while such cathodes often suffer from irreversible structural transitions, causing serious capacity fading and voltage decay upon cycling, and the formation process of the oxidized oxygen species remains elusive. Herein, a series of Al-doped P2-type Na0.6Ni0.3Mn0.7O2 cathode materials for SIBs are reported and the corresponding charge compensation mechanisms are investigated qualitatively and quantitatively. The combined analyses reveal that Al doping boosts the reversible oxygen redox reactions through the reductive coupling reactions between orphaned O 2p states in NaOAl local configurations and Ni4+ ions, as directly evidenced by X-ray absorption fine structure results. Additionally, Al doping also induces an increased interlayer spacing and inhibits the unfavorable P2 to O2 phase transition upon desodiation/sodiation, which is common in P2-type Mn-based cathode materials, leading to the great improvement in capacity retention and rate capability. This work provides deeper insights into the development of structurally stable and high-capacity layered cathode materials for SIBs with anion–cation synergetic contributions.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202101524-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem., Int. Ed. 2015, 54, 3431; b) H. Pan, Y. S. Hu, L. Chen, Energy Environ. Sci. 2013, 6, 2338.
- 2W. Zuo, J. Qiu, X. Liu, F. Ren, H. Liu, H. He, C. Luo, J. Li, G. F. Ortiz, H. Duan, J. Liu, M. S. Wang, Y. Li, R. Fu, Y. Yang, Nat. Commun. 2020, 11, 3544.
- 3S. Xu, H. Li, X. Wang, ChemElectroChem 2021, 8, 866.
- 4P. Nie, L. Shen, G. Pang, Y. Zhu, G. Xu, Y. Qing, H. Dou, X. Zhang, J. Mater. Chem. A 2015, 3, 16590.
- 5a) K. Kubota, S. Kumakura, Y. Yoda, K. Kuroki, S. Komaba, Adv. Energy Mater. 2018, 8, 1703415; b) P.-F. Wang, Y. You, Y.-X. Yin, Y.-G. Guo, Adv. Energy Mater. 2018, 8, 1701912; c) K. Kubota, N. Yabuuchi, H. Yoshida, M. Dahbi, S. Komaba, MRS Bull. 2014, 39, 416.
- 6P. F. Wang, Y. You, Y. X. Yin, Y. S. Wang, L. J. Wan, L. Gu, Y. G. Guo, Angew. Chem., Int. Ed. 2016, 55, 7445.
- 7D. Kim, M. Cho, K. Cho, Adv. Mater. 2017, 29, 1701788.
- 8X. Cao, X. Li, Y. Qiao, M. Jia, F. Qiu, Y. He, P. He, H. Zhou, ACS Energy Lett. 2019, 4, 2409.
- 9a) Y. Shi, S. Li, A. Gao, J. Zheng, Q. Zhang, X. Lu, L. Gu, D. Cao, ACS Appl. Mater. Interfaces 2019, 11, 24122; b) X. Chen, C. Cheng, M. Ding, Y. Xia, L. Y. Chang, T. S. Chan, H. Tang, N. Zhang, L. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 43665.
- 10X. Wu, J. Guo, D. Wang, G. Zhong, M. J. McDonald, Y. Yang, J. Power Sources 2015, 281, 18.
- 11E. McCalla, A. M. Abakumov, M. Saubanère, D. Foix, E. J. Berg, G. Rousse, M. L. Doublet, D. Gonbeau, P. Novák, G. Tendeloo, R. Dominko, J. M. Tarascon, Science 2015, 350, 1516.
- 12K. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. Pickup, Y. S. Liu, K. Edstrom, J. Guo, A. V. Chadwick, L. C. Duda, P. G. Bruce, Nat. Chem. 2016, 8, 684.
- 13D. H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, Nat. Chem. 2016, 8, 692.
- 14R. A. House, G. J. Rees, M. A. Pérez-Osorio, J. J. Marie, E. Boivin, A. W. Robertson, A. Nag, M. Garcia-Fernandez, K. J. Zhou, P. G. Bruce, Nat. Energy 2020, 5, 777.
- 15H. Xu, S. Guo, H. Zhou, J. Mater. Chem. A 2019, 7, 23662.
- 16a) E. McCalla, M. T. Sougrati, G. Rousse, E. J. Berg, A. Abakumov, N. Recham, K. Ramesha, M. Sathiya, R. Dominko, G. Van Tendeloo, P. Novak, J. M. Tarascon, J. Am. Chem. Soc. 2015, 137, 4804; b) P. E. Pearce, G. Assat, A. Iadecola, F. Fauth, R. Dedryvère, A. Abakumov, G. Rousse, J.-M. Tarascon, J. Phys. Chem. C 2020, 124, 2771.
- 17a) M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, A. S. Prakash, M. L. Doublet, K. Hemalatha, J. M. Tarascon, Chem. Mater. 2013, 25, 1121; b) M. Sathiya, A. M. Abakumov, D. Foix, G. Rousse, K. Ramesha, M. Saubanere, M. L. Doublet, H. Vezin, C. P. Laisa, A. S. Prakash, D. Gonbeau, G. VanTendeloo, J. M. Tarascon, Nat. Mater. 2015, 14, 230.
- 18a) N. Hong, K. Wu, Z. Peng, Z. Zhu, G. Jia, M. Wang, J. Phys. Chem. C 2020, 124, 22925; b) I. Hasa, S. Passerini, J. Hassoun, J. Mater. Chem. A 2017, 5, 4467; c) D. Yuan, W. He, F. Pei, F. Wu, Y. Wu, J. Qian, Y. Cao, X. Ai, H. Yang, J. Mater. Chem. A 2013, 1, 3895; d) W.-L. Pang, X.-H. Zhang, J.-Z. Guo, J.-Y. Li, X. Yan, B.-H. Hou, H.-Y. Guan, X.-L. Wu, J. Power Sources 2017, 356, 80.
- 19X. Zhang, F. Qiu, K. Jiang, P. He, M. Han, S. Guo, H. Zhou, Chem. Commun. 2020, 56, 6293.
- 20N. Li, S. Sallis, J. K. Papp, B. D. McCloskey, W. Yang, W. Tong, Nano Energy 2020, 78, 105365.
- 21Q. Wang, S. Chu, S. Guo, Chin. Chem. Lett. 2019, 31, 2167.
- 22H. V. Ramasamy, K. Kaliyappan, R. Thangavel, V. Aravindan, K. Kang, D. U. Kim, Y. Park, X. Sun, Y.-S. Lee, J. Mater. Chem. A 2017, 5, 8408.
- 23X. Bai, M. Sathiya, B. Mendoza-Sánchez, A. Iadecola, J. Vergnet, R. Dedryvère, M. Saubanère, A. M. Abakumov, P. Rozier, J.-M. Tarascon, Adv. Energy Mater. 2018, 8, 1802379.
- 24a) P. F. Wang, H. R. Yao, X. Y. Liu, J. N. Zhang, L. Gu, X. Q. Yu, Y. X. Yin, Y. G. Guo, Adv. Mater. 2017, 29, 1700210; b) P.-F. Wang, Y. You, Y.-X. Yin, Y.-G. Guo, J. Mater. Chem. A 2016, 4, 17660.
- 25a) G.-H. Lee, J. Wu, D. Kim, K. Cho, M. Cho, W. Yang, Y. M. Kang, Angew. Chem., Int. Ed. 2020, 132, 8759;
10.1002/ange.202001349 Google Scholarb) N. Li, J. Wu, S. Hwang, J. K. Papp, W. H. Kan, L. Zhang, C. Zhu, B. D. McCloskey, W. Yang, W. Tong, ACS Energy Lett. 2020, 5, 3535.
- 26D. Zhan, Y. Liang, P. Cui, Z. Xiao, RSC Adv. 2015, 5, 6372.
- 27P. K. Nayak, J. Grinblat, M. Levi, E. Levi, S. Kim, J. W. Choi, D. Aurbach, Adv. Energy Mater. 2016, 6, 1502398.
- 28a) J. Ge, L. Fan, A. M. Rao, J. Zhou, B. Lu, Nat. Sustain. 2021, https://doi.org/10.1038/s41893-021-00810-7; b) L. Fan, Y. Hu, A. M. Rao, J. Zhou, Z. Hou, C. Wang, B. Lu, Small Methods 2021, 5, 2101131.
- 29K. Wang, P. Yan, M. Sui, Nano Energy 2018, 54, 148.
- 30R. Qiao, K. Dai, J. Mao, T.-C. Weng, D. Sokaras, D. Nordlund, X. Song, V. S. Battaglia, Z. Hussain, G. Liu, W. Yang, Nano Energy 2015, 16, 186.
- 31X. Liu, W. Zuo, B. Zheng, Y. Xiang, K. Zhou, Z. Xiao, P. Shan, J. Shi, Q. Li, G. Zhong, R. Fu, Y. Yang, Angew. Chem., Int. Ed. 2019, 58, 18086.
- 32a) X. Zheng, P. Li, H. Zhu, K. Rui, G. Zhao, J. Shu, X. Xu, W. Sun, S. X. Dou, Energy Storage Mater. 2018, 15, 257; b) Y. Zhang, M. Wu, J. Ma, G. Wei, Y. Ling, R. Zhang, Y. Huang, ACS Cent. Sci. 2020, 6, 232.
- 33H. V. Ramasamy, K. Kaliyappan, R. Thangavel, W. M. Seong, K. Kang, Z. Chen, Y. S. Lee, J. Phys. Chem. Lett. 2017, 8, 5021.
- 34a) Q. C. Wang, J. K. Meng, X. Y. Yue, Q. Q. Qiu, Y. Song, X. J. Wu, Z. W. Fu, Y. Y. Xia, Z. Shadike, J. Wu, X. Q. Yang, Y. N. Zhou, J. Am. Chem. Soc. 2019, 141, 840; b) X. Yu, Y. Lyu, L. Gu, H. Wu, S. M. Bak, Y. Zhou, K. Amine, S. N. Ehrlich, H. Li, K. W. Nam, X. Q. Yang, Adv. Energy Mater. 2014, 4, 1300950.
- 35a) N. Li, S. Sallis, J. K. Papp, J. Wei, B. D. McCloskey, W. Yang, W. Tong, ACS Energy Lett. 2019, 4, 2836; b) K. Dai, J. Mao, Z. Zhuo, Y. Feng, W. Mao, G. Ai, F. Pan, Y.-d. Chuang, G. Liu, W. Yang, Nano Energy 2020, 74, 104831; c) M. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin, M. T. Sougrati, M. L. Doublet, D. Foix, D. Gonbeau, W. Walker, A. S. Prakash, M. Ben Hassine, L. Dupont, J. M. Tarascon, Nat. Mater. 2013, 12, 827.
- 36Q. Li, R. Qiao, L. A. Wray, J. Chen, Z. Zhuo, Y. Chen, S. Yan, F. Pan, Z. Hussain, W. Yang, J. Phys. D: Appl. Phys. 2016, 49, 413003.
- 37a) C. Tian, Y. Xu, D. Nordlund, F. Lin, J. Liu, Z. Sun, Y. Liu, M. Doeff, Joule 2018, 2, 464; b) C. Tian, F. Lin, M. M. Doeff, Acc. Chem. Res. 2018, 51, 89.
- 38J. Zhang, Q. Wang, S. Li, Z. Jiang, S. Tan, X. Wang, K. Zhang, Q. Yuan, S.-J. Lee, C. J. Titus, K. D. Irwin, D. Nordlund, J.-S. Lee, P. Pianetta, X. Yu, X. Xiao, X.-Q. Yang, E. Hu, Y. Liu, Nat. Commun. 2020, 11, 6342.
- 39a) X. Rong, E. Hu, Y. Lu, F. Meng, C. Zhao, X. Wang, Q. Zhang, X. Yu, L. Gu, Y.-S. Hu, H. Li, X. Huang, X.-Q. Yang, C. Delmas, L. Chen, Joule 2019, 3, 503; b) B. Song, E. Hu, J. Liu, Y. Zhang, X. Q. Yang, J. Nanda, A. Huq, K. Page, J. Mater. Chem. A 2019, 7, 1491; c) L. Yang, Z. Liu, S. Liu, M. Han, Q. Zhang, L. Gu, Q. Li, Z. Hu, X. Wang, H.-J. Lin, C.-T. Chen, J.-M. Chen, S.-C. Haw, Z. Wang, L. Chen, Nano Energy 2020, 78, 105172.
- 40a) U. Maitra, R. A. House, J. W. Somerville, N. Tapia-Ruiz, J. G. Lozano, N. Guerrini, R. Hao, K. Luo, L. Jin, M. A. Perez-Osorio, F. Massel, D. M. Pickup, S. Ramos, X. Lu, D. E. McNally, A. V. Chadwick, F. Giustino, T. Schmitt, L. C. Duda, M. R. Roberts, P. G. Bruce, Nat. Chem. 2018, 10, 288; b) T. E. Conry, A. Mehta, J. Cabana, M. M. Doeff, Chem. Mater. 2012, 24, 3307.
- 41G. Assat, J.-M. Tarascon, Nat. Energy 2018, 3, 373.
- 42Q. C. Wang, E. Hu, Y. Pan, N. Xiao, F. Hong, Z. W. Fu, X. J. Wu, S. M. Bak, X. Q. Yang, Y. N. Zhou, Adv. Sci. 2017, 4, 1700219.
10.1002/advs.201700219 Google Scholar
- 43a) J. Rana, J. K. Papp, Z. Lebens-Higgins, M. Zuba, L. A. Kaufman, A. Goel, R. Schmuch, M. Winter, M. S. Whittingham, W. Yang, B. D. McCloskey, L. F. J. Piper, ACS Energy Lett. 2020, 5, 634; b) H. Ji, J. Wu, Z. Cai, J. Liu, D. H. Kwon, H. Kim, A. Urban, J. K. Papp, E. Foley, Y. Tian, M. Balasubramanian, H. Kim, R. J. Clément, B. D. McCloskey, W. Yang, G. Ceder, Nat. Energy 2020, 5, 213.
- 44E. J. Kim, L. A. Ma, L. C. Duda, D. M. Pickup, A. V. Chadwick, R. Younesi, J. T. S. Irvine, A. R. Armstrong, ACS Appl. Energy Mater. 2019, 3, 184.
- 45T. Risthaus, D. Zhou, X. Cao, X. He, B. Qiu, J. Wang, L. Zhang, Z. Liu, E. Paillard, G. Schumacher, M. Winter, J. Li, J. Power Sources 2018, 395, 16.
- 46a) K. Dai, J. Wu, Z. Zhuo, Q. Li, S. Sallis, J. Mao, G. Ai, C. Sun, Z. Li, W. E. Gent, W. C. Chueh, Y.-d. Chuang, R. Zeng, Z.-x. Shen, F. Pan, S. Yan, L. F. J. Piper, Z. Hussain, G. Liu, W. Yang, Joule 2019, 3, 518; b) J. Wu, Z. Zhuo, X. Rong, K. Dai, Z. Lebens-Higgins, F. P. Shawn Sallis, L. F. J. Piper, Y.-d. C. Gao Liu8, Z. Hussain, Q. Li, R. Zeng, Z.-x. Shen, W. Yang, Sci. Adv. 2020, 6, eaaw3871; c) C. Cheng, S. Li, T. Liu, Y. Xia, L. Y. Chang, Y. Yan, M. Ding, Y. Hu, J. Wu, J. Guo, L. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 41304.
- 47R. Qiao, Y. Wang, P. Olalde-Velasco, H. Li, Y. S. Hu, W. Yang, J. Power Sources 2015, 273, 1120.
- 48Q. Li, S. Yan, W. Yang, J. Chem. Phys. 2020, 152, 140901.
- 49S. Roychoudhury, R. Qiao, Z. Zhuo, Q. Li, Y. Lyu, J. H. Kim, J. Liu, E. Lee, B. J. Polzin, J. Guo, S. Yan, Y. Hu, H. Li, D. Prendergast, W. Yang, Energy Environ. Mater. 2021, 4, 246.
- 50C. Cheng, M. Ding, T. Yan, K. Dai, J. Mao, N. Zhang, L. Zhang, J. Guo, Energies 2020, 13, 5729.
- 51a) Z. Zhuo, K. Dai, R. Qiao, R. Wang, J. Wu, Y. Liu, J. Peng, L. Chen, Y. Chuang, F. Pan, Z. Shen, G. Liu, H. Li, T. Devereaux, W. Yang, Joule 2021, 5, 975; b) Z. Zhuo, K. Dai, J. Wu, L. Zhang, N. Tamura, Y. Chuang, J. Feng, J. Guo, Z. Shen, G. Liu, F. Pan, W. Yang, ACS Energy Lett. 2021, 6, 3417.
- 52a) P. Yan, J. Zheng, Z.-K. Tang, A. Devaraj, G. Chen, K. Amine, J.-G. Zhang, L.-M. Liu, C. Wang, Nat. Nanotechnol. 2019, 14, 602; b) K. Ku, J. Hong, H. Kim, H. Park, W. M. Seong, S.-K. Jung, G. Yoon, K.-Y. Park, H. Kim, K. Kang, Adv. Energy Mater. 2018, 8, 1800606; c) K. Luo, M. R. Roberts, N. Guerrini, N. Tapia-Ruiz, R. Hao, F. Massel, D. M. Pickup, S. Ramos, Y.-S. Liu, J. Guo, A. V. Chadwick, L. C. Duda, P. G. Bruce, J. Am. Chem. Soc. 2016, 138, 11211; d) S. Hy, F. Felix, J. Rick, W.-N. Su, B. J. Hwang, J. Am. Chem. Soc. 2014, 136, 999.
- 53a) J. Hong, H.-D. Lim, M. Lee, S.-W. Kim, H. Kim, S.-T. Oh, G.-C. Chung, K. Kang, Chem. Mater. 2012, 24, 2692; b) N. Yabuuchi, K. Yoshii, S.-T. Myung, I. Nakai, S. Komaba, J. Am. Chem. Soc. 2011, 133, 4404.