Investigations on the Electrochemical and Mechanical Properties of Sb2O3 Nanobelts by In Situ Transmission Electron Microscopy
Yifan Zheng
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Zhi Zhang
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWeifeng Liu
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorYonghui Wu
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorXiutao Fu
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorLuying Li
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorJun Su
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Yihua Gao
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYifan Zheng
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Zhi Zhang
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWeifeng Liu
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorYonghui Wu
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorXiutao Fu
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorLuying Li
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorJun Su
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Yihua Gao
School of Physics, and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Sb2O3 shows great promise as a high-capacity anode material for sodium-ion batteries (SIBs) due to the combined mechanisms of intercalation, conversion, and alloying. In this work, the electrochemical performance and mechanical property of Sb2O3 nanobelts during sodiation/desodiation are revealed by constructing nanoscale solid-state SIBs in a high-resolution transmission electron microscopy. It is found that the Sb2O3 nanobelt exhibits an ultrahigh sodiation speed of ≈13.5 nm s−1 and experiences a three-step sodiation reaction including the intercalation reaction to form NaxSb2O3, the conversion reaction to form Sb, and the alloying reaction to form NaSb. The alloying reaction is found to be reversible, while the conversion reaction is partially reversible. The Sb2O3 nanobelt shows anisotropic expansion and the orientation of the Sb2O3 nanobelt has great influence on the expansion ratio. It is found that the existence of a {010} plane with large d-spacing in the nanobelt leads to a surprisingly small expansion ratio (≈5%). The morphology of the Sb2O3 nanobelt is well maintained during multiple electrochemical cycles. In situ bending experiments suggest that the sodiated Sb2O3 nanobelts show improved toughness and flexibility compared to pristine Sb2O3 nanobelts. These fundamental studies provide insight into the rational design of anode materials with improved electrochemical and mechanical performance in SIBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202101416-sup-0001-SuppMat.pdf949.5 KB | Supporting Information |
smtd202101416-sup-0002-MovieS1.mp421.8 MB | Supplemental Movie 1 |
smtd202101416-sup-0003-MovieS2.mp416.6 MB | Supplemental Movie 2 |
smtd202101416-sup-0004-MovieS3.mp44.7 MB | Supplemental Movie 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J.-M. Tarascon, Nature 2008, 451, 652.
- 2A. Mukherjee, H. A. Ardakani, T. Yi, J. Cabana, R. Shahbazian-Yassar, R. F. Klie, Appl. Phys. Lett. 2017, 110, 213903.
- 3Y. Lee, J.-K. Yoo, J. H. Jo, H. Park, C.-H. Jo, W. Ko, H. Yashiro, S.-T. Myung, J. Kim, ACS Nano 2019, 13, 11707.
- 4C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, J. Zhang, Nano Energy 2017, 33, 363.
- 5Z. Wu, Y. Zhong, J. Liu, J. Wu, X. Guo, B. Zhong, Z. Zhang, J. Mater. Chem. A 2015, 3, 10092.
- 6L. Ma, R. Chen, Y. Hu, G. Zhu, T. Chen, H. Lu, J. Liang, Z. Tie, Z. Jin, J. Liu, Nanoscale 2016, 8, 17911.
- 7W. Zuo, X. Liu, J. Qiu, D. Zhang, Z. Xiao, J. Xie, F. Ren, J. Wang, Y. Li, G. F. Ortiz, W. Wen, S. Wu, M.-S. Wang, R. Fu, Y. Yang, Nat. Commun. 2021, 12, 4903.
- 8J. Wang, L. Wang, C. Eng, J. Wang, Adv. Energy Mater. 2017, 7, 1602706.
- 9S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater. 2012, 2, 710.
- 10J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev. 2017, 46, 3529.
- 11Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, C. Wang, ACS Nano 2013, 7, 6378.
- 12J. Yang, J. Wang, Y. Tang, D. Wang, B. Xiao, X. Li, R. Li, G. Liang, T.-K. Sham, X. Sun, J. Mater. Chem. A 2013, 1, 7306.
- 13E. Lee, W. C. Lee, N. M. Asl, D. Kim, M. Slater, C. Johnson, Y. Kim, ECS Electrochem. Lett. 2012, 1, A71.
- 14E. Lee, S. Sahgong, C. S. Johnson, Y. Kim, Electrochim. Acta 2014, 143, 272.
- 15C.-D. Zhao, J.-Z. Guo, Z.-Y. Gu, X.-T. Wang, X.-X. Zhao, W.-H. Li, H.-Y. Yu, X.-L. Wu, Nano Res. 2021.
- 16Z. Gu, J. Guo, X. Zhao, X. Wang, D. Xie, Z. Sun, C. Zhao, H. Liang, W. Li, X. Wu, InfoMat 2021, 3, 694.
- 17F. Wu, C. Zhao, S. Chen, Y. Lu, Y. Hou, Y.-S. Hu, J. Maier, Y. Yu, Mater. Today 2018, 21, 960.
- 18C. Zhao, Y. Lu, Y. Li, L. Jiang, X. Rong, Y.-S. Hu, H. Li, L. Chen, Small Methods 2017, 1, 1600063.
- 19H. Hou, C. E. Banks, M. Jing, Y. Zhang, X. Ji, Adv. Mater. 2015, 27, 7861.
- 20D. P. DiVincenzo, E. J. Mele, Phys. Rev. B 1985, 32, 2538.
- 21K. Ozawa, Solid State Ionics 1994, 69, 212.
- 22P. Ge, M. Fouletier, Solid State Ionics 1988, 28–30, 1172.
- 23N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.
- 24J. Duan, W. Zhang, C. Wu, Q. Fan, W. Zhang, X. Hu, Y. Huang, Nano Energy 2015, 16, 479.
- 25B. S. Naidu, M. Pandey, V. Sudarsan, R. K. Vatsa, R. Tewari, Chem. Phys. Lett. 2009, 474, 180.
- 26H. Hou, M. Jing, Y. Yang, Y. Zhang, Y. Zhu, W. Song, X. Yang, X. Ji, J. Mater. Chem. A 2015, 3, 2971.
- 27L. Baggetto, H.-Y. Hah, C. E. Johnson, C. A. Bridges, J. A. Johnson, G. M. Veith, Phys. Chem. Chem. Phys. 2014, 16, 9538.
- 28Y. Zhao, L. P. Wang, M. T. Sougrati, Z. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z. Xu, Adv. Energy Mater. 2017, 7, 1601424.
- 29X. Zhou, Z. Zhang, X. Lu, X. Lv, G. Ma, Q. Wang, Z. Lei, ACS Appl. Mater. Interfaces 2017, 9, 34927.
- 30M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Chem. Rev. 2013, 113, 5364.
- 31M. Valvo, F. Lindgren, U. Lafont, F. Björefors, K. Edström, J. Power Sources 2014, 245, 967.
- 32Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, M. Yan, Nano Energy 2014, 5, 60.
- 33K. Li, H. Liu, G. Wang, Arabian J. Sci. Eng. 2014, 39, 6589.
- 34Y. Tan, L. Chen, H. Chen, Q. Hou, X. Chen, Mater. Lett. 2018, 212, 103.
- 35M. Deng, S. Li, W. Hong, Y. Jiang, W. Xu, H. Shuai, G. Zou, Y. Hu, H. Hou, W. Wang, X. Ji, Mater. Chem. Phys. 2019, 223, 46.
- 36M. Hu, Y. Jiang, W. Sun, H. Wang, C. Jin, M. Yan, ACS Appl. Mater. Interfaces 2014, 6, 19449.
- 37Z. Yi, D. Fang, W. Zhang, J. Tian, S. Chen, J. Liang, N. Lin, Y. Qian, CCS Chem. 2021, 3, 1306.
- 38J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, Science 2010, 330, 1515.
- 39Y. Wu, X. Xu, C. Zhu, P. Liu, S. Yang, H. L. Xin, R. Cai, L. Yao, M. Nie, S. Lei, P. Gao, L. Sun, L. Mai, F. Xu, ACS Energy Lett. 2019, 4, 2081.
- 40F. Xu, Z. Li, L. Wu, Q. Meng, H. L. Xin, J. Sun, B. Ge, L. Sun, Y. Zhu, Nano Energy 2016, 30, 771.
- 41L. Fei, S. Lei, W.-B. Zhang, W. Lu, Z. Lin, C. H. Lam, Y. Chai, Y. Wang, Nat. Commun. 2016, 7, 12206.
- 42F. Xu, L. Wu, Q. Meng, M. Kaltak, J. Huang, J. L. Durham, M. Fernandez-Serra, L. Sun, A. C. Marschilok, E. S. Takeuchi, K. J. Takeuchi, M. S. Hybertsen, Y. Zhu, Nat. Commun. 2017, 8, 15400.
- 43M. Z. M. Yusop, P. Ghosh, Y. Yaakob, G. Kalita, M. Sasase, Y. Hayashi, M. Tanemura, ACS Nano 2012, 6, 9567.
- 44L. Luo, J. Wu, J. Luo, J. Huang, V. P. Dravid, Sci. Rep. 2014, 4, 3863.
- 45M. Ma, S. Zhang, L. Wang, Y. Yao, R. Shao, L. Shen, L. Yu, J. Dai, Y. Jiang, X. Cheng, Y. Wu, X. Wu, X. Yao, Q. Zhang, Y. Yu, Adv. Mater. 2021, 33, 2106232.
- 46J. Zhu, P. Wei, Q. Zeng, G. Wang, K. Wu, S. Ma, P. K. Shen, X. Wu, Small 2020, 16, 2003001.
- 47R. G. Orman, D. Holland, J. Solid State Chem. 2007, 180, 2587.
- 48C. Svensson, Acta Crystallogr., Sect. B 1974, 30, 458.
- 49Y. Wu, W. Luo, P. Gao, C. Zhu, X. Hu, K. Qu, J. Chen, Y. Wang, L. Sun, L. Mai, F. Xu, Nano Energy 2020, 77, 105299.
- 50X. H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L. Q. Zhang, Y. Liu, A. Kushima, W. T. Liang, J. W. Wang, J.-H. Cho, E. Epstein, S. A. Dayeh, S. T. Picraux, T. Zhu, J. Li, J. P. Sullivan, J. Cumings, C. Wang, S. X. Mao, Z. Z. Ye, S. Zhang, J. Y. Huang, Nano Lett. 2011, 11, 3312.
- 51Z. Zhang, J. Qian, W. Lu, C. H. Chan, S. P. Lau, J.-Y. Dai, Energy Storage Mater. 2018, 15, 91.
- 52L. Yao, Nano Energy 2021, 87, 106182.
- 53Y. Cheng, Z. Yao, Q. Zhang, J. Chen, W. Ye, S. Zhou, H. Liu, M.-S. Wang, Adv. Funct. Mater. 2020, 30, 2005417.
- 54Q. Sun, Q.-Q. Ren, H. Li, Z.-W. Fu, Electrochem. Commun. 2011, 13, 1462.
- 55B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. S. Meng, T. Wang, J. Y. Lee, Adv. Mater. 2014, 26, 3854.
- 56S. Kim, Z. Yao, J. Lim, M. C. Hersam, C. Wolverton, V. P. Dravid, K. He, Adv. Mater. 2018, 30, 1804925.
- 57W. Kang, Y. Wang, J. Xu, J. Mater. Chem. A 2017, 5, 7667.
- 58R. Hu, D. Chen, G. Waller, Y. Ouyang, Y. Chen, B. Zhao, B. Rainwater, C. Yang, M. Zhu, M. Liu, Energy Environ. Sci. 2016, 9, 595.
- 59X. Ou, L. Cao, X. Liang, F. Zheng, H.-S. Zheng, X. Yang, J.-H. Wang, C. Yang, M. Liu, ACS Nano 2019, 13, 3666.
- 60Y. Li, H. Sun, X. Cheng, Y. Zhang, K. Zhao, Nano Energy 2016, 27, 95.
- 61K. Zhao, W. L. Wang, J. Gregoire, M. Pharr, Z. Suo, J. J. Vlassak, E. Kaxiras, Nano Lett. 2011, 11, 2962.
- 62K. Zheng, Z. Zhang, Y. Hu, P. Chen, W. Lu, J. Drennan, X. Han, J. Zou, Nano Lett. 2016, 16, 1787.
- 63R. Shao, P. Gao, K. Zheng, Nanotechnology 2015, 26, 265703.
- 64R. W. Shao, K. Zheng, RSC Adv. 2015, 5, 34447.
- 65Y. Liu, N. S. Hudak, D. L. Huber, S. J. Limmer, J. P. Sullivan, J. Y. Huang, Nano Lett. 2011, 11, 4188.
- 66N. Li, S. Liao, Y. Sun, H. W. Song, C. X. Wang, J. Mater. Chem. A 2015, 3, 5820.
- 67J. Pan, N. Wang, Y. Zhou, X. Yang, W. Zhou, Y. Qian, J. Yang, Nano Res. 2017, 10, 1794.
- 68Z. Deng, F. Tang, D. Chen, X. Meng, L. Cao, B. Zou, J. Phys. Chem. B 2006, 110, 18225.
- 69J. Y. Park, S. J. Kim, J. H. Chang, H. K. Seo, J. Y. Lee, J. M. Yuk, Nat. Commun. 2018, 9, 922.
- 70P. Gao, Y.-Y. Zhang, L. Wang, S. Chen, Y. Huang, X. Ma, K. Liu, D. Yu, Nano Energy 2017, 32, 302.