Enhancing Kinetic Performance and Structural Stability of Na4Fe3(PO4)2(P2O7) Cathode via La Doping Defect Engineering
Xin Chen
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
Search for more papers by this authorJiahui Wu
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
Search for more papers by this authorJingyao Zeng
National Energy Metal Resources and New Materials Key Laboratory, College of Chemistry and Chemical Engineering, Central South University, Central South University, Changsha, 410083 China
Search for more papers by this authorCaiyan Shen
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
Search for more papers by this authorYuejun Wang
Cornex New Energy Co, Ltd, Wuhan, 430207 China
Hetao College, Bayannur, 015000 P. R. China
Search for more papers by this authorYangyang Xie
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000 China
Search for more papers by this authorGuorong Hu
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
Search for more papers by this authorKe Du
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
Search for more papers by this authorZhongdong Peng
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
Search for more papers by this authorCorresponding Author
Yanbing Cao
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
E-mail: [email protected]
Search for more papers by this authorXin Chen
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
Search for more papers by this authorJiahui Wu
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
Search for more papers by this authorJingyao Zeng
National Energy Metal Resources and New Materials Key Laboratory, College of Chemistry and Chemical Engineering, Central South University, Central South University, Changsha, 410083 China
Search for more papers by this authorCaiyan Shen
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
Search for more papers by this authorYuejun Wang
Cornex New Energy Co, Ltd, Wuhan, 430207 China
Hetao College, Bayannur, 015000 P. R. China
Search for more papers by this authorYangyang Xie
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000 China
Search for more papers by this authorGuorong Hu
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
Search for more papers by this authorKe Du
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
Search for more papers by this authorZhongdong Peng
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
Search for more papers by this authorCorresponding Author
Yanbing Cao
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Due to the strong electronegativity of P in the anion group and the strong P─O covalent bond, NFPP exhibits low electronic and ionic conductivity, hindering its rate capability. A doping modification strategy of selecting La3+ with a large ion radius at Na site has been designed, and the nano-micro architectural Na4-3xLax□2xFe3(PO4)2(P2O7)/C (0≤x≤0.04) cathode material with Na vacancies is successfully synthesized via a scalable preparation route. Introducing positively charged substitutional point defects and charged vacancies through doping La3+ not only broadens the Na+ transport channels but also reduces lattice stress and stabilizes the crystal bulk structure during long-term cycling for La3+ as pillars. Additionally, high valence La3+ doping enhances the effective charge carrier concentration and improves material conductivity. Consequently, the kinetic performance of Na+ migration is significantly enhanced. The optimal Na3.91La0.03□0.06Fe3(PO4)2(P2O7)/C (NFPP/C-La3) exhibits the best electrochemical performance. The synthesized NFPP/C-La3 exhibits excellent rate performance (99.45 mAh g−1 at 20 C) and long-term cycle stability (92.36% of capacity retention over 1000 cycles at 10 C). These results provide the importance and prospect of the high valence ion doping for NFPP/C with high rate stability.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202412260-sup-0001-SuppMat.docx4.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Hampton, T. Fawcett, J. Rosenow, C. Michaelis, R. Mayne, Joule 2021, 5, 285.
- 2F. Fuso Nerini, J. Tomei, L. S. To, I. Bisaga, P. Parikh, M. Black, A. Borrion, C. Spataru, V. Castán Broto, G. Anandarajah, B. Milligan, Y. Mulugetta, Nat. Energy 2018, 3, 10.
- 3R. Amirante, E. Cassone, E. Distaso, P. Tamburrano, Energy Convers. Manage. 2017, 132, 372.
- 4M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N. R. Levy, P. Minnmann, L. Stolz, T. Waldmann, M. Wohlfahrt-Mehrens, D. Aurbach, M. Winter, Y. Ein-Eli, J. Janek, Adv. Energy Mater. 2021, 11, 2101126.
- 5X. Liu, R. Wang, S. Liu, J. Pu, H. Xie, M. Wu, D. Liu, Y. Li, J. Liu, Adv. Energy Mater. 2023, 13, 2302987.
- 6C. Delmas, Adv. Energy Mater. 2018, 8, 1703137.
- 7A. Bauer, J. Song, S. Vail, W. Pan, J. Barker, Y. Lu, Adv. Energy Mater. 2018, 8, 1702869.
- 8Q. Liu, Z. Hu, W. Li, C. Zou, H. Jin, S. Wang, S. Chou, S.-X. Dou, Energy Environ. Sci. 2021, 14, 158.
- 9H. Yao, H. Li, B. Ke, S. Chu, S. Guo, H. Zhou, Small Methods 2023, 7, 2201555.
- 10Y. Liang, W. Liu, H. Wu, Z. Tang, L. Xu, J. Power Sources 2024, 617, 235159.
- 11Y. Liang, H Wu, W. Liu, M. Qin, Z. Tang, B. Shen, W. Wang, Q. Liu, ACS Appl. Nano Mater. 2024, 7, 17768.
- 12Y. Wang, W. Li, G. Hu, Z. Peng, Y. Cao, H. Gao, K. Du, J. B. Goodenough, Chem. Mater. 2019, 31, 5214.
- 13Q. Ni, Y. Bai, F. Wu, C. Wu, Adv. Sci. 2017, 4, 1600275.
- 14J. Zeng, D. Guan, W. Wang, X. Tan, Y. Cao, Z. Peng, G. Hu, K. Du, ACS Appl. Energy Mater. 2023, 6, 4238.
- 15Z.-R. Deng, L.-L. Zhang, F. Pei, W. Liu, C. Sun, H.-B. Sun, X.-K. Ding, X.-L. Yang, Small 2024, 20, 2400149.
- 16Y. Xin, Q. Wang, Y. Wang, M. Wang, F. Wu, H. Gao, Chem. Eng. J. 2024, 483, 149438.
- 17J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou, H. Liu, S. Dou, Adv. Mater. 2022, 34, 2108384.
- 18R. Wang, C. Qian, Z. Zhang, H. Shen, J. Xia, D. Cui, K. Sun, H Liu, C. Guo, F. Yu, J. Li, W. Bao, Small 2023, 19, 2206848.
- 19D. Deb, G. Sai Gautam, J. Mater. Res. 2022, 37, 3169.
- 20W. Zhao, W. Wang, G. Hu, K. Du, Z. Peng, X. Zhang, H. Li, Z. Fang, Y. Cao, Electrochim. Acta 2023, 440, 141718.
- 21C. Sun, L. L. Zhang, X. Q. Xiong, Z.-R. Deng, H.-B. Sun, X.-L. Yang, ACS Sustainable Chem. Eng. 2024, 12.
- 22Y. Niu, Y. Zhao, M. Xu, Carbon Neutralization 2023, 2, 150.
- 23X. Lu, S. Li, Y. Li, F. Yu, C. Wu, Y. Bai, Adv. Mater. 2024, 36, 2407359.
- 24Q. Wei, T. Huang, X. Huang, B. Wang, Y. Jiang, D. Tang, D.-L. Peng, B. Dunn, L. Mai, Interdisc. Mater. 2023, 2, 434.
10.1002/idm2.12080 Google Scholar
- 25H. Kim, I. Park, S. Lee, H. Kim, K.-Y. Park, Y.-U. Park, H. Kim, J. Kim, H.-D. Lim, W.-S. Yoon, K. Kang, Chem. Mater. 2013, 25, 3614.
- 26X. Wu, G. Zhong, Y. Yang, J. Power Sources 2016, 327, 666.
- 27S. M. Wood, C. Eames, E. Kendrick, M. S Islam, J. Phys. Chem. C 2015, 119, 15935.
- 28H. Kim, I. Park, D.-H. Seo, S. Lee, S.-W. Kim, W. J. Kwon, Y.-U. Park, C. S. Kim, S. Jeon, K. Kang, J. Am. Chem. Soc. 2012, 134, 10369.
- 29F. Boucher, J. Gaubicher, M. Cuisinier, D. Guyomard, P. Moreau, J. Am. Chem. Soc. 2014, 136, 9144.
- 30J. Lu, S. C. Chung, S. Nishimura, A. Yamada, Chem. Mater. 2013, 25, 4557.
- 31A. Zhao, T. Yuan, P. Li, C. Liu, H. Cong, X. Pu, Z. Chen, X. Ai, H. Yang, Y. Cao, Nano Energy 2022, 91, 106680.
- 32A. Zhao, C. Liu, F. Ji, S. Zhang, H. Fan, W. Ni, Y. Fang, X. Ai, H. Yang, Y. Cao, ACS Energy Lett. 2023, 8, 753.
- 33T. Jin, H. Li, K. Zhu, P.-F. Wang, P. Liu, L. Jiao, Chem. Soc. Rev. 2020, 49, 2342.
- 34X. Ge, L. He, C. Guan, X Wang, J. Li, Y. Lai, Z. Zhang, ACS Nano 2024, 18, 1714.
- 35J. Gao, H. Chen, Y Mei, L. Ni, H. Wang, J. Huang, N. Hong, B. Song, Y Tian, W. Deng, G. Zou, H. Hou, X. Ji, Nano Energy 2023, 115, 108747.
- 36Z. Li, M. Huang, B. Chang, J. Ge, D Xin, D Jiang, H. Liu, W. Zhou, Interdisc. Mater. 2023, 2, 876.
- 37Y. Liu, X. Rong, R. Bai, R. Xiao, C. Xu, C. Zhang, J. Xu, W. Yin, Q. Zhang, X. Liang, Y. Lu, J. Zhao, L. Chen, Y.-S. Hu, Nat. Energy 2023, 8, 1088.
- 38W. Liu, P. Bai, S. Wei, C. Yang, L. Xu, Angew. Chem., Int. Ed. 2022, 61, 202201166.
- 39W. Liu, W. Cui, C. Yi, J. Xia, J. Shang, W. Hu, Z. Wang, X. Sang, Y. Li, J. Liu, Nat. Commun. 2024, 15, 9889.
- 40X. Liu, Y. Luo, C. Ling, Y. Shi, G. Zhan, H. Li, H. Gu, K. Wei, F. Guo, Z. Ai, L. Zhang, Appl. Catal., B 2022, 301, 120766.
- 41M. G. Hajiabadi, M. Zamanian, D. Souri, Ceram. Int. 2019, 45, 14084.
- 42N. V. Kosova, V. A. Belotserkovsky, Electrochim. Acta 2018, 278, 182.
- 43B. Xing, J. Ren, P. Hu, W. Luo, B Mai, H. Cai, J. Wu, X. Wu, X. Chen, Z. Deng, W. Feng, L. Mai, Small 2024, 20, 2310997.
- 44W. Ren, M. Qin, Y. Zhou, H. Zhou, J. Zhu, J. Pan, J. Zhou, X. Cao, S. Liang, Energy Storage Mater. 2023, 54, 776.
- 45W. Wang, Y. Gang, Z. Hu, Z. Yan, W. Li, Y. Li, Q.-F. Gu, Z. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Nat. Commun. 2020, 11, 980.
- 46H. Kim, R. A. Shakoor, C. Park, S. Y. Lim, J.-S. Kim, Y. N. Jo, W. Cho, K. Miyasaka, R. Kahraman, Y. Jung, J. W. Choi, Adv. Funct. Mater. 2013, 23, 1147.
- 47J. Kim, D.-H. Seo, H. Kim, I. Park, J.-K. Yoo, S.-K. Jung, Y.-U. Park, W. A. G. Iii, K. Kang, Energy Environ. Sci. 2015, 8, 540.