Carbon Molecular Sieve Membranes Derived From Dual-Cross–linked Polybenzimidazole for Enhanced H2/CO2 Separation
Jianyu Guan
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorYongchao Sun
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorZeyuan Gao
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorLu Bai
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorTianyou Li
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorFangxu Fan
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorHongjin Li
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorFake Sun
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorYijun Liu
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorGaohong He
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Canghai Ma
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
E-mail: [email protected]
Search for more papers by this authorJianyu Guan
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorYongchao Sun
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorZeyuan Gao
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorLu Bai
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorTianyou Li
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorFangxu Fan
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorHongjin Li
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorFake Sun
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorYijun Liu
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorGaohong He
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Canghai Ma
State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The need for efficient CO2 separation during hydrogen production from fossil fuels drives the development of advanced, energy-efficient solutions. Membrane technology offers a promising approach for separating CO2 from H2, which, however, faces the challenge of low H2/CO2 selectivity. To address this challenge, a novel strategy to cross–link polybenzimidazole (PBI) using potassium persulfate (K2S2O8) is proposed, followed by pyrolysis to fabricate highly selective carbon molecular sieve (CMS) membranes. The cross–linked PBI-derived CMS membranes exhibit significantly enhanced permeability and H2/CO2 selectivity compared to neat PBI-CMS membranes. For instance, the CMS membrane prepared from PBI cross–linked for 24 h and pyrolyzed at 900 °C (denoted as KPBI24 CMS@900) demonstrates outstanding molecular sieving capability. This membrane achieves an H2 permeability of 55 Barrer with an H2/CO2 selectivity of 48 tested at 100 °C, significantly surpassing its non-cross–linked counterparts and the 2008 Robeson upper bound. The design principles of this study provide a robust technical foundation for persulfate-cross–linked PBI and offer an innovative approach for preparing high-performance CMS membranes.
Conflict of Interest
A patent application related to this work has been filed (C.N. patent application CN117815936A, 2024; C. Ma et al., A method of Preparation of a Cross–linked Polybenzimidazole Carbon Molecular Sieve Membrane for H2/CO2 Separation).
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202412158-sup-0001-SuppMat.docx158.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Ghavam, M. Vahdati, I. A. G. Wilson, P. Styring, Front. Energ. Res. 2021, 9, 580808.
- 2C. Tarhan, M. A. Çil, J. Energy Storage 2021, 40, 102676.
- 3M. Wappler, D. Unguder, X. Lu, H. Ohlmeyer, H. Teschke, W. Lueke, Int. J. Hydrogen Energy 2022, 47, 33551.
- 4S. van Renssen, Nat. Climate Change 2020, 10, 799.
- 5A. Iulianelli, S. Liguori, J. Wilcox, A. Basile, Catalysis Rev. 2016, 58, 1.
- 6T. L. LeValley, A. R. Richard, M. Fan, Int. J. Hydrogen Energy 2014, 39, 16983.
- 7C. Ma, W. J. Koros, J. Membr. Sci. 2014, 451, 1.
- 8L. Zhao, E. Riensche, L. Blum, D. Stolten, Energy Procedia 2011, 4, 629.
- 9A. B. Hinchliffe, K. E. Porter, Chem. Eng. Res. Des. 2000, 78, 255.
- 10P. Bernardo, E. Drioli, G. Golemme, Industr. Engin. Chem. Res. 2009, 48, 4638.
- 11L. Hu, S. Pal, H. Nguyen, V. Bui, H. Lin, J. Polym. Sci. 2020, 58, 2467.
- 12C. Ma, J. J. Urban, Chem.-Sustainab.-Energy-Mater. 2019, 12, 4405.
- 13H. Li, Y. Sun, Q. Zhao, G. He, C. Ma, Separat. Purificat. Technol 2025, 354, 129338.
- 14S. Mukherjee, S. Chen, A. A. Bezrukov, M. Mostrom, V. V. Terskikh, D. Franz, S. Q. Wang, A. Kumar, M. Chen, B. Space, Y. Huang, M. J. Zaworotko, Angew. Chemie Int. Ed. Eng. 2020, 59, 16188.
- 15B. D. Freeman, Macromolecules 1999, 32, 375.
- 16X. Wang, F. Fan, Y. Sun, J. Zhang, C. Ma, G. He, AIChE J. 2024, 70, e18471.
- 17K. Y. Wang, M. Weber, T. S. Chung, J. Mater. Chem. A 2022, 10, 8687.
- 18J. H. Bitter, A. Asadi Tashvigh, Industr. Engin. Chem. Res. 2022, 61, 6125.
- 19M. Shan, J. Zhang, S. Cong, Y. Zhang, X. He, F. Kapteijn, X. Liu, Separat. Purificat. Technol 2024, 349, 127732.
- 20A. Naderi, A. Asadi Tashvigh, T. S. Chung, J. Membr. Sci. 2019, 572, 343.
- 21L. Hu, V. T. Bui, A. Krishnamurthy, S. Fan, W. Guo, S. Pal, X. Chen, G. Zhang, Y. Ding, R. P. Singh, M. Lupion, H. Lin, Sci. Adv. 2022, 8, eabl8160.
- 22L. Hu, V. T. Bui, L. Huang, R. P. Singh, H. Lin, ACS Appl. Mater. Interfaces 2021, 13, 12521.
- 23L. Hu, V. T. Bui, S. Fan, W. Guo, S. Pal, Y. Ding, H. Lin, J. Mater. Chem. A 2022, 10, 10872.
- 24Z. Liu, W. Qiu, W. Quan, W. J. Koros, Nat. Mater. 2023, 22, 109.
- 25O. Sanyal, S. S. Hays, N. E. Leon, Y. A. Guta, A. K. Itta, R. P. Lively, W. J. Koros, Angew. Chemie Int. Ed. Eng. 2020, 59, 20343.
- 26L. Lei, F. Pan, A. Lindbråthen, X. Zhang, M. Hillestad, Y. Nie, L. Bai, X. He, M. D. Guiver, Nat. Commun. 2021, 12, 268.
- 27Q. Zhao, Y. Sun, J. Zhang, F. Fan, T. Li, G. He, C. Ma, J. Membr. Sci. 2024, 693, 122326.
- 28L. Wu, X. Chen, Z. Zhang, S. Xu, C. Ma, N. Li, J. Membr. Sci. 2021, 634, 119399.
- 29C. Ma, W. J. Koros, J. Membr. Sci. 2018, 551, 214.
- 30W. J. Koros, C. Zhang, Nat. Mater. 2017, 16, 289.
- 31J. Zhang, Y. Sun, F. Fan, Q. Zhao, G. He, C. Ma, J. Membr. Sci. 2023, 688, 122115.
- 32H. Li, Y. Liu, New Carbon Materials 2022, 37, 484.
- 33S. Schlosser, W. Qiu, Z. Liu, Z. S. Campbell, W. J. Koros, J. Membr. Sci. 2025, 717, 123564.
- 34G. Genduso, W. Ogieglo, Y. Wang, I. Pinnau, J. Membr. Sci. 2024, 699, 122533.
- 35M. Omidvar, H. Nguyen, H. Liang, C. M. Doherty, A. J. Hill, C. M. Stafford, X. Feng, M. T. Swihart, H. Lin, ACS Appl. Mater. Interfaces 2019, 11, 47365.
- 36Y. Sun, F. Fan, L. Bai, T. Li, J. Guan, F. Sun, Y. Liu, W. Xiao, G. He, C. Ma, Results in Engineering 2023, 20, 101398.
- 37Y. Sun, J. Zhang, H. Li, F. Fan, Q. Zhao, G. He, C. Ma, Separat. Purificat. Technol 2023, 314, 123623.
- 38B. Zhao, G. M. Shi, K. Y. Wang, J. Y. Lai, T. S. Chung, Separat. Purificat. Technol 2021, 255, 117702.
- 39D. Chen, C. Yan, X. Li, L. Liu, D. Wu, X. Li, Separat. Purificat. Technol. 2019, 224, 15.
- 40A. Naderi, A. Asadi Tashvigh, T. S. Chung, M. Weber, C. Maletzko, J. Membr. Sci. 2018, 563, 726.
- 41A. Asadi Tashvigh, T. S. Chung, J. Membr. Sci. 2019, 572, 580.
- 42R. Bouchet, E. Siebert, Solid State Ionics 1999, 118 , 287.
- 43L. Zhu, M. T. Swihart, H. Lin, J. Mater. Chem. A 2017, 5, 19914.
- 44D. Schwartz, R. Gadiou, J.-F. Brilhac, G. Prado, G. Martinez, Ind. Eng. Chem. Res. 2000, 39, 2183.
- 45F. Fan, Y. Sun, Q. Zhao, J. Zhang, J. Guan, G. He, C. Ma, Separat. Purificat. Technol. 2023, 324, 124511.
- 46S. J. Luo, J. R. Wiegand, B. Kazanowska, C. M. Doherty, K. Konstas, A. J. Hill, Guo, Macromolecules 2016, 49, 3395.
- 47H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, D. J. Cookson, Science 2007, 318, 254.
- 48C. Ma, X. Li, J. Zhang, Y. Liu, J. J. Urban, ACS Appl. Mater. Interfaces 2020, 12, 16922.
- 49C. Ma, J. J. Urban, Adv. Function. Mater. 2019, 29, 1903243.
- 50X. Chen, Y. Fan, L. Wu, L. Zhang, D. Guan, C. Ma, N. Li, Nat. Commun. 2021, 12, 6140.
- 51D. Q. Vu, W. J. Koros, S. J. Miller, Ind. Eng. Chem. Res. 2002, 41, 367.
- 52V. C. Geiszler, W. J. Koros, Indust. Engin. Chem. Res. 1996, 35, 2999.
- 53W. M. Jiao, Y. J. Ban, Z. X. Shi, X. S. Jiang, Y. S. Li, W. S. Yang, J. Membr. Sci. 2017, 533, 1.
- 54C. W. Song, T. H. Wang, X. Y. Wang, J. S. Qiu, Y. M. Cao, Separat. Purificat. Technol. 2008, 58 , 412.
- 55M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 2007, 9, 1276.
- 56A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon 2005, 43, 1731.
- 57D. Y. Wu, X. W. Qu, X. P. He, C. H. Yi, B. B. Zhang, B. L. Yang, Ind. Eng. Chem. Res. 2023, 62, 9825.
- 58Y. Sun, X. Wang, X. Li, W. Xiao, Dai, C. Ma, G. He, Green Chemical Engineering 2023, 4, 1.
- 59J. Y. Park, D. R. Paul, J. Membr. Sci. 1997, 125, 23.
- 60A. Basile, A. Cassano, N. K. Rastogi, Advances in membrane technologies for water treatment: materials, processes and applications, Elsevier, Netherlands 2015.
- 61X. Kou, T. Anjum, K. Sun, L. Liu, G. Ji, A. Laeeq Khan, M. Elma, G. Olguin, J. Membr. Sci. 2025, 713, 123269.
- 62R. D. Noble, S. A. Stern, Membrane separations technology: principles and applications, Elsevier, Netherlands 1995.
- 63R. Barrer, E. K. Rideal, Trans. Faraday Soc. 1939, 35, 628.
- 64G. S. Park, in Synthetic membranes: Science, engineering and applications, Springer, Berlin 1986, 57.
10.1007/978-94-009-4712-2_3 Google Scholar
- 65Y. Liu, B. Xue, Y. Lai, L. Cai, K. Chen, P. J. Yin, J. Membr. Sci. 2023, 683, 121821.
- 66B. W. Rowe, L. M. Robeson, B. D. Freeman, D. R. Paul, J. Membr. Sci. 2010, 360, 58.
- 67L. M. Robeson, J. Membr. Sci. 2008, 320, 390.