Lithographic Innovations in the Development of Solid Oxide Cells: Techniques, Advancements, and Prospects
Muhammad Waqas
Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
School of Physic, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Department of Electrical Engineering, Sukkur IBA University, Sukkur, 65200 Pakistan
Search for more papers by this authorCorresponding Author
Yinghua Niu
Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorMengjun Tang
School of Physic, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorBirkneh Sirak Teketel
Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
Search for more papers by this authorWeirong Huo
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorCorresponding Author
Shuwei Hao
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Weiqiang Lv
Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
School of Physic, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorMuhammad Waqas
Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
School of Physic, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Department of Electrical Engineering, Sukkur IBA University, Sukkur, 65200 Pakistan
Search for more papers by this authorCorresponding Author
Yinghua Niu
Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorMengjun Tang
School of Physic, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorBirkneh Sirak Teketel
Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
Search for more papers by this authorWeirong Huo
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
Search for more papers by this authorCorresponding Author
Shuwei Hao
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Weiqiang Lv
Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou, 313001 P. R. China
School of Physic, University of Electronic Science and Technology of China, Chengdu, 611731 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Solid oxide cells (SOCs) are crucial in energy conversion and storage technologies owing to their versatile properties and reversible operation. Lithographic techniques are used to pattern and fabricate different components of SOCs, facilitating the development of micro- and single-unit SOCs. Here the lithographic techniques used in SOCs development are discussed, highlighting their impact on optimizing component structures at the micro- and nanoscale. Here it is focused on the role of lithographic techniques in improving the electrolyte–electrode interface, enhancing ion conduction and surface exchange, reducing operating temperatures, impacting the surface area of electrodes, and addressing challenges like thermomechanical instabilities and material degradation. Various lithographic techniques are analyzed and discussed for their ability to enhance SOC performance. These techniques enable precise control over micro- and nanoscale structures, improving the electrochemical performance and durability of SOCs. Moreover, the application of lithography in addressing scalability issues for mass production and reducing fabrication defects is also discussed in detail. Emerging trends and prospects in lithographic innovations are also presented, providing a comprehensive outlook on how these techniques can help overcome current limitations in SOC technology. Integrating lithographic methods promises to revolutionize SOCs, making them more efficient and viable for various clean and sustainable energy applications.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1J. Cao, Y. Ji, Z. Shao, Chem. Soc. Rev. 2023, 53, 450.
- 2S. Bilgen, Renewable Sustainable Energy Rev. 2014, 38, 890.
- 3Z. Gao, L. V. Mogni, E. C. Miller, J. G. Railsback, S. A. Barnett, Energy Environ. Sci. 2016, 9, 1602.
- 4A. S. Deepi, S. Dharani Priya, A. Samson Nesaraj, A. I. Selvakumar, Int. J. Green Energy 2022, 19, 1600.
- 5Y. Niu, Y. Zhou, W. Zhang, Y. Zhang, C. Evans, Z. Luo, N. Kane, Y. Ding, Y. Chen, X. Guo, W. Lv, M. Liu, Adv. Energy Mater. 2022, 12, 2103783.
- 6Y. Wang, Y. Ling, B. Wang, G. Zhai, G. Yang, Z. Shao, R. Xiao, T. Li, Energy Environ. Sci. 2023, 16, 5721.
- 7S. Y. Gómez, D. Hotza, Renewable Sustainable Energy Rev. 2016, 61, 155.
- 8S. Chen, H. Zhang, C. Yao, H. Lou, M. Chen, X. Lang, K. Cai, Energy Fuels 2023, 37, 3470.
- 9Z. Wu, P. Zhu, J. Yao, S. Zhang, J. Ren, F. Yang, Z. Zhang, Appl. Energy 2020, 279, 115794.
- 10V. Saarinen, J. Pennanen, M. Kotisaari, O. Thomann, O. Himanen, S. Di Iorio, P. Hanoux, J. Aicart, K. Couturier, X. Sun, M. Chen, B. R. Sudireddy, Fuel Cells 2021, 21, 477.
- 11D. Yu, J. Hu, W. Wang, B. Gu, Fuel 2023, 333, 126442.
- 12S. He, Y. Zou, K. Chen, S. P. Jiang, Interdiscip. Mater. 2023, 2, 111.
- 13A. Farsi, M. A. Rosen, Appl. Energy 2023, 329, 120280.
- 14R. Daneshpour, M. Mehrpooya, Energy Convers. Manag. 2018, 176, 274.
- 15L. Zhang, H. Xie, Q. Niu, F. Wang, C. Xie, G. Wang, Sustainable Energy Fuels 2023, 7, 1433.
- 16F. Hussain, M. A. Ahmad, R. Raza, M. A. Khan, Z. U. Rehman, R. A. Riaz, G. Abbas, J. Power Sources 2019, 425, 147.
- 17S. Ahmadi, H. Ghaebi, A. Shokri, Energy 2019, 186, 115899.
- 18P. Zhu, J. Yao, C. Qian, F. Yang, E. Porpatham, Z. Zhang, Z. Wu, Fuel 2020, 275, 117883.
- 19Y. Feng, J. Qu, Y. Zhu, B. Wu, Y. Wu, Z. Xiao, J. Liu, Energy Convers. Manage.: X 2023, 18, 100350.
10.1016/j.ecmx.2023.100350 Google Scholar
- 20J. Li, J. Cheng, Y. Zhang, Z. Chen, M. Nasr, M. Farghali, D. W. Rooney, P. Yap, A. I. Osman, Adv. Energy Sustainability Res. 2024, 5, 2400132.
- 21A. Talukdar, A. Chakrovorty, P. Sarmah, P. Paramasivam, V. Kumar, S. K. Yadav, S. Manickkam, Int. J. Energy Res. 2024, 6443247, 20.
- 22T. B. Ferriday, P. H. Middleton, Int. J. Hydrogen Energy 2021, 46, 18489.
- 23O. Z. Sharaf, M. F. Orhan, Renewable Sustainable Energy Rev. 2014, 32, 810.
- 24Y. Wang, D. F. Ruiz Diaz, K. S. Chen, Z. Wang, X. C. Adroher, Mater. Today 2020, 32, 178.
- 25B. C. H. Steele, A. Heinzel, Nature 2001, 414, 345.
- 26A. Glüsen, M. Müller, D. Stolten, Fuel Cells 2020, 20, 507.
- 27S. Mekhilef, R. Saidur, A. Safari, Renewable Sustainable Energy Rev. 2012, 16, 981.
- 28P. Tomczyk, J. Power Sources 2006, 160, 858.
- 29T. S. Chowdhury, F. T. Mohsin, M. M. Tonni, M. N. H. Mita, M. M. Ehsan, Int. J. Thermofluids 2023, 18, 100329.
- 30A. Albatayneh, M. N. Assaf, D. Alterman, M. Jaradat, Environ. Clim. Technol. 2020, 24, 669.
- 31M. R. Nagaraja, W. K. Biswas, C. P. Selvan, Sol. Energy Adv. 2025, 5, 100084.
10.1016/j.seja.2024.100084 Google Scholar
- 32A. E. M. van den Oever, D. Costa, G. Cardellini, M. Messagie, Fuel 2022, 324, 124478.
10.1016/j.fuel.2022.124478 Google Scholar
- 33S. J. Zarrouk, H. Moon, Geothermics 2014, 51, 142.
- 34B. Desalegn, D. Gebeyehu, B. Tamrat, Heliyon 2022, 8, e11263.
- 35A. Kirubakaran, S. Jain, R. K. Nema, Renewable Sustainable Energy Rev. 2009, 13, 2430.
- 36S. A. Rasaki, C. Liu, C. Lao, H. Zhang, Z. Chen, Renewable Sustainable Energy Rev. 2021, 148, 111369.
- 37M. Wang, C. Su, Z. Zhu, H. Wang, L. Ge, Composites, Part B 2022, 238, 109881.
- 38J. Cao, C. Su, Y. Ji, G. Yang, Z. Shao, J. Energy Chem. 2021, 57, 406.
- 39H. Shi, C. Su, R. Ran, J. Cao, Z. Shao, Prog. Nat. Sci.: Mater. Int. 2020, 30, 764.
- 40S. Hossain, A. M. Abdalla, S. N. B. Jamain, J. H. Zaini, A. K. Azad, Renewable Sustainable Energy Rev. 2017, 79, 750.
- 41 EuropeanCommission, RePowerEU: Joint European Action for More Affordable, Secure and Sustainable Energy 2022, https://ec.europa.eu/commission/presscorner/detail/en/ip_22_1511.
- 42K. Lonergan, P. Gabrielli, G. Sansavini, Energy Justice Analysis of the European Commission REPowerEU Plan ETH Zurich 2022, https://doi.org/10.3929/ethz-b-000551952.
10.3929/ethz?b?000551952 Google Scholar
- 43R. Perry, Report on the Status of the Solid Oxide Fuel Cell Program, US Department of Energy 2019, https://www.energy.gov/fecm/report-congress-status-solid-oxide-fuel-cell-program.
- 44 Hydrogen and F. C. T. Office, Technical Targets for High Temperature Electrolysis, US Department of Energy 2022, https://www.energy.gov/eere/fuelcells/technical-targets-high-temperature-electrolysis.
- 45M. S. Arshad, X. Yangkou Mbianda, I. Ali, G. Wanbing, T. Kamal, K. Kauhaniemi, S. Z. Hassan, G. Yasin, Energy Technol. 2023, 11, 2300452.
- 46J. R. Meacham, F. Jabbari, J. Brouwer, J. L. Mauzey, G. S. Samuelsen, J. Power Sources 2006, 156, 472.
- 47Y. Niu, Y. Zhou, W. Lv, Y. Chen, Y. Zhang, W. Zhang, Z. Luo, N. Kane, Y. Ding, L. Soule, Y. Liu, W. He, M. Liu, Adv. Funct. Mater. 2021, 31, 2100034.
- 48S. Oh, D. Kim, H. J. Ryu, K. T. Lee, Adv. Funct. Mater. 2024, 34, 2311426.
- 49F. Liu, D. Ding, C. Duan, Adv. Sci. 2023, 10, 2206478.
- 50W. Wang, S. Chen, J. Li, W. Wang, Int. J. Hydrogen Energy 2015, 40, 4649.
- 51Z. Gao, H. Wang, E. Miller, Q. Liu, D. Senn, S. Barnett, ACS Appl. Mater. Interfaces 2017, 9, 7115.
- 52T. Bayer, R. Selyanchyn, S. Fujikawa, K. Sasaki, S. M. Lyth, J. Membr. Sci. 2017, 541, 347.
- 53N. V. Gelfond, O. F. Bobrenok, M. R. Predtechensky, N. B. Morozova, K. V. Zherikova, I. K. Igumenov, Inorg. Mater. 2009, 45, 659.
- 54A. A. Solovyev, N. S. Sochugov, S. V. Rabotkin, A. V. Shipilova, I. V. Ionov, A. N. Kovalchuk, A. O. Borduleva, Appl. Surf. Sci. 2014, 310, 272.
- 55X. Zhu, Z. Lü, B. Wei, X. Huang, Y. Zhang, W. Su, J. Power Sources 2011, 196, 729.
- 56G. Chen, H. X. You, Y. Kasai, H. Sato, A. Abudula, J. Alloys Compd. 2011, 509, 5159.
- 57P. Von Dollen, S. Barnett, J. Am. Ceram. Soc. 2005, 88, 3361.
- 58N. A. Baharuddin, N. F. Abdul Rahman, H. Abd. Rahman, M. R. Somalu, M. A. Azmi, J. Raharjo, Int. J. Energy Res. 2020, 44, 8296.
- 59N. Hedayat, D. Panthi, Y. Du, Int. J. Appl. Ceram. Technol. 2018, 15, 307.
- 60G. Meng, H. Song, C. Xia, X. Liu, D. Peng, Fuel Cells 2004, 4, 48.
- 61S. Jo, B. Sharma, D. H. Park, J. ha Myung, J. Korean Ceram. Soc. 2020, 57, 135.
- 62S. Uhlenbruck, R. Nédélec, D. Sebold, H. P. Buchkremer, D. Stöver, ECS Meet. Abstr. 2011, MA2011-01, 686.
- 63W. Yu, Y. Lim, S. Lee, A. Pandiyan, G. Y. Cho, S. W. Cha, J. Mater. Chem. A 2020, 8, 21668.
- 64S. Oh, J. Park, J. W. Shin, B. C. Yang, J. Zhang, D. Y. Jang, J. An, J. Mater. Chem. A 2018, 6, 7401.
- 65D. Stöver, D. Hathiramani, R. Vaßen, R. J. Damani, Surf. Coat. Technol. 2006, 201, 2002.
- 66J. T. Gao, J. H. Li, Y. P. Wang, C. J. Li, C. X. Li, J. Therm. Spray Technol. 2020, 29, 2001.
- 67C. X. Li, C. J. Li, L. J. Guo, Int. J. Hydrogen Energy 2010, 35, 2964.
- 68E. Y. Pikalova, E. G. Kalinina, Renewable Sustainable Energy Rev. 2019, 116, 109440.
- 69J. S. Cherng, M. Y. Ho, T. H. Yeh, W. H. Chen, Ceram. Int. 2012, 38, S477.
- 70S. M. Majhi, S. K. Behura, S. Bhattacharjee, B. P. Singh, T. K. Chongdar, N. M. Gokhale, L. Besra, Int. J. Hydrogen Energy 2011, 36, 14930.
- 71N. Nasani, D. Ramasamy, S. Mikhalev, A. V. Kovalevsky, D. P. Fagg, J. Power Sources 2015, 278, 582.
- 72W. Bian, W. Wu, B. Wang, W. Tang, M. Zhou, C. Jin, H. Ding, W. Fan, Y. Dong, J. Li, D. Ding, Nature 2022, 604, 479.
- 73S. A. Chizhik, I. V. Kovalev, M. P. Popov, S. F. Bychkov, A. P. Nemudry, Chem. Eng. J. 2022, 445, 136724.
- 74M. Papac, V. Stevanović, A. Zakutayev, R. O'Hayre, Nat. Mater. 2021, 20, 301.
- 75P. Yao, J. Zhang, Q. Qiu, Y. Zhao, F. Yu, Y. Li, Int. J. Hydrogen Energy 2025, 104, 212.
- 76S. P. S. Shaikh, A. Muchtar, M. R. Somalu, Renewable Sustainable Energy Rev. 2015, 51, 1.
- 77D. Ding, X. Li, S. Y. Lai, K. Gerdes, M. Liu, Energy Environ. Sci. 2014, 7, 552.
- 78W. Wang, C. Su, Y. Wu, R. Ran, Z. Shao, Chem. Rev. 2013, 113, 8104.
- 79L. Tan, C. Yang, N. Zhou, Chin. J. Chem. Eng. 2015, 23, 128.
- 80C. Lee, S. S. Shin, J. Choi, J. Kim, J. W. Son, M. Choi, H. H. Shin, J. Mater. Chem. A 2020, 8, 16534.
- 81M. Krammer, A. Schmid, A. Nenning, A. E. Bumberger, M. Siebenhofer, C. Herzig, A. Limbeck, C. Rameshan, M. Kubicek, J. Fleig, ACS Appl. Mater. Interfaces 2023, 15, 8076.
- 82M. Yang, Z. Xu, S. Desai, D. Kumar, J. Sankar, J. Fuel Cell Sci. Technol. 2015, 12, 021004.
- 83P. C. Su, C. C. Chao, J. H. Shim, R. Fasching, F. B. Prinz, Nano Lett. 2008, 8, 2289.
- 84S. A. Veldhuis, A. George, M. Nijland, J. E. ten Elshof, Langmuir 2012, 28, 15111.
- 85K. Jia, L. Zheng, W. Liu, J. Zhang, F. Yu, X. Meng, C. Li, J. Sunarso, N. Yang, J. Eur. Ceram. Soc. 2022, 42, 4275.
- 86A. Evans, A. Bieberle-Hütter, J. L. M. Rupp, L. J. Gauckler, J. Power Sources 2009, 194, 119.
- 87M. Tang, Y. Niu, W. Muhammad, S. Muhammad, Z. Zhong, S. Muhammad, Y. Pang, Z. Wan, N. Chen, L. Qiao, W. Lv, Int. J. Hydrogen Energy 2024, 50, 618.
- 88H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, F. B. Prinz, J. Electrochem. Soc. 2007, 154, B20.
- 89M. S. I. Sozal, W. Li, S. Das, B. Jafarizadeh, A. H. Chowdhury, C. Wang, Z. Cheng, Mater. Adv. 2024, 5, 1940.
- 90E. Koep, C. Compson, M. Liu, Z. Zhou, Solid State Ionics 2005, 176, 1.
- 91C. Lee, S. S. Shin, J. Kim, J. Choi, M. Choi, H. H. Shin, ACS Appl. Mater. Interfaces 2022, 14, 32124.
- 92S. S. Shin, J. H. Kim, K. T. Bae, K.-T. Lee, S. M. Kim, J.-W. Son, M. Choi, H. Kim, Energy Environ. Sci. 2020, 13, 3459.
- 93M. Lira, N. Kostretsova, I. Babeli, L. Bernadet, S. Marquez, A. Morata, M. Torrell, A. Tarancón, Electrochim. Acta 2023, 467, 143074.
- 94N. Kostretsova, A. Pesce, S. Anelli, M. Nuñez, A. Morata, F. Smeacetto, M. Torrell, A. Tarancón, J. Mater. Chem. A 2024, 12, 22960.
- 95J. Lee, S. Cheon, J.-H. Choi, D.-G. Choi, J.-Y. Jung, S. Jeon, E. Lee, J.-H. Jeong, Thin Solid Films 2017, 636, 552.
- 96R. Akama, T. Okabe, K. Sato, Y. Inaba, N. Shikazono, A. Sciazko, J. Taniguchi, Microelectron. Eng. 2020, 225, 111277.
- 97E. C. Brown, S. K. Wilke, D. A. Boyd, D. G. Goodwin, S. M. Haile, J. Mater. Chem. 2010, 20, 2190.
- 98C. C. Chao, C. M. Hsu, Y. Cui, F. B. Prinz, ACS Nano 2011, 5, 5692.
- 99A. Bieberle, L. P. Meier, L. J. Gauckler, J. Electrochem. Soc. 2001, 148, A646.
- 100L. dos Santos-Gómez, J. Zamudio-García, J. M. Porras-Vázquez, E. R. Losilla, D. Marrero-López, J. Power Sources 2021, 507, 230277.
- 101G. Yang, S. H. Nam, G. Han, N. X. Fang, D. Lee, ACS Appl. Mater. Interfaces 2023, 15, 50427.
- 102S. Majumdar, T. Claar, B. Flandermeyer, J. Am. Ceram. Soc. 1986, 69, 628.
- 103C. K. Lin, T. T. Chen, Y. P. Chyou, L. K. Chiang, J. Power Sources 2007, 164, 238.
- 104S. Osman, K. Ahmed, M. Nemattalla, S. Ookawara, M. Ahmed, Int. J. Hydrogen Energy 2021, 46, 33010.
- 105G. Anandakumar, N. Li, A. Verma, P. Singh, J. H. Kim, J. Power Sources 2010, 195, 6659.
- 106S. Ma, D. Xue, Q. Li, J. Zheng, C. Feng, G. Li, J. Electrochem. Soc. 2023, 170, 034502.
- 107R. J. Woolley, S. J. Skinner, Solid State Ionics 2014, 255, 1.
- 108Y. Yang, F. Liu, X. Han, X. Wang, D. Dong, Y. Chen, P. Feng, M. Khan, S. Wang, Y. Ling, Appl. Energy 2022, 307, S0306261921014872.
- 109B. Wang, T. Li, Y. Lin, R. Xiao, Ceram. Int. 2024, 50, 37833.
- 110D. Dong, X. Shao, K. Xie, X. Hu, G. Parkinson, C. Z. Li, Electrochem. Commun. 2014, 42, 64.
- 111S. J. Ahn, J. H. Lee, J. Kim, J. Moon, Electrochem. Solid-State Lett. 2006, 9, A228.
- 112H. Figiel, O. Zogał, V. Yartys, J. Alloys Compd. 2005, 404–406, 1.
- 113L. A. Jolaoso, I. T. Bello, O. A. Ojelade, A. Yousuf, C. Duan, P. Kazempoor, Int. J. Hydrogen Energy 2023, 48, 33017.
- 114C. Sun, Inorg. Chem. Front. 2024, 11, 8164.
- 115T. Hibino, H. Iwahara, Chem. Lett. 1993, 22, 1131.
- 116F. Tsumori, Y. Tanaka, Y. Xu, T. Osada, H. Miura, Jpn. J. Appl. Phys. 2014, 53, 06JK02.
- 117Y. Xu, F. Tsumori, T. Osada, H. Miura, Micro Nano Lett. 2013, 8, 571.
- 118T. Okabe, Y. Kim, Z. Jiao, N. Shikazono, J. Taniguchi, Jpn. J. Appl. Phys. 2018, 57, 106501.
- 119K. Matsuzaki, N. Shikazono, N. Kasagi, J. Power Sources 2011, 196, 3073.
- 120N. Shikazono, Y. Sakamoto, Y. Yamaguchi, N. Kasagi, J. Power Sources 2009, 193, 530.
- 121J. An, Y.-B. Kim, J. Park, T. M. Gur, F. B. Prinz, ECS Meet. Abstr. 2014, MA2014-02, 1008.
- 122V. J. Ferreira, D. Wolff, A. Hornés, A. Morata, M. Torrell, A. Tarancón, C. Corchero, Appl. Energy 2021, 291, 116803.
- 123R. D. Farahani, M. Dubé, D. Therriault, Adv. Mater. 2016, 28, 5794.
- 124H. Chen, X. Wang, F. Xue, Y. Huang, K. Zhou, D. Zhang, J. Eur. Ceram. Soc. 2018, 38, 5294.
- 125S. Cao, Y. Qiu, X. F. Wei, H. H. Zhang, J. Mater. Process. Technol. 2015, 220, 231.
- 126A. Ratsimba, A. Zerrouki, N. Tessier-Doyen, B. Nait-Ali, D. André, P. Duport, A. Neveu, N. Tripathi, F. Francqui, G. Delaizir, Ceram. Int. 2021, 47, 7465.
- 127H. Zhang, Y. Yang, K. Hu, B. Liu, M. Liu, Z. Huang, Addit. Manuf. 2020, 34, 101199.
- 128J. Son, H. Kim, Y. Choi, H. Lee, Microsyst. Nanoeng. 2024, 10, 93.
- 129E. M. Hernández-Rodríguez, P. Acosta-Mora, J. Méndez-Ramos, E. Borges Chinea, P. Esparza Ferrera, J. Canales-Vázquez, P. Núñez, J. C. Ruiz-Morales, Bol. Soc. Esp. Ceram. Vidrio 2014, 53, 213.
- 130L. Wei, J. Zhang, F. Yu, W. Zhang, X. Meng, N. Yang, S. Liu, Int. J. Hydrogen Energy 2019, 44, 6182.
- 131S. Masciandaro, M. Torrell, P. Leone, A. Tarancón, J. Eur. Ceram. Soc. 2019, 39, 9.
- 132B. Xing, C. Cao, W. Zhao, M. Shen, C. Wang, Z. Zhao, J. Eur. Ceram. Soc. 2020, 40, 1418.
- 133A. M. Martos, S. Márquez, R. S. Pavlov, W. Zambelli, S. Anelli, M. Nuñez, L. Bernadet, J. J. Brey, M. Torrell, A. Tarancón, J. Power Sources 2024, 609, 234704.
- 134X. Zhou, J. Wang, X. Pang, X. Guo, Z. Zhao, J. Sunarso, F. Yu, X. Meng, J. Zhang, N. Yang, J. Eur. Ceram. Soc. 2024, 44, 7837.
- 135V. Brichzin, J. Fleig, H. U. Habermeier, G. Cristiani, J. Maier, Solid State Ionics 2002, 152–153, 499.
- 136A. C. Johnson, B. Lai, H. Xiong, S. Ramanathan, J. Power Sources 2009, 186, 252.
- 137A. Buttler, H. Spliethoff, Renewable Sustainable Energy Rev. 2018, 82, 2440.
- 138F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, J. Mater. Chem. C 2015, 3, 10715.
- 139M. Keane, M. K. Mahapatra, A. Verma, P. Singh, Int. J. Hydrogen Energy 2012, 37, 16776.
- 140P. Hjalmarsson, X. Sun, Y. L. Liu, M. Chen, J. Power Sources 2013, 223, 349.
- 141B. K. Park, Q. Zhang, P. W. Voorhees, S. A. Barnett, Energy Environ. Sci. 2019, 12, 3053.
- 142K. Chen, S. P. Jiang, Int. J. Hydrogen Energy 2011, 36, 10541.
- 143A. V. Virkar, Int. J. Hydrogen Energy 2010, 35, 9527.
- 144A. Mai, V. A. C. Haanappel, S. Uhlenbruck, F. Tietz, D. Stöver, Solid State Ionics 2005, 176, 1341.
- 145H. Xiao, T. Reitz, ECS Trans. 2006, 1, 201.
- 146J. Bae, D. Lee, S. Hong, H. Yang, Y. B. Kim, Surf. Coat. Technol. 2015, 279, 54.
- 147J. An, Y. B. Kim, J. Park, T. M. Gür, F. B. Prinz, Nano Lett. 2013, 13, 4551.
- 148C. C. Chao, Y. B. Kim, F. B. Prinz, Nano Lett. 2009, 9, 3626.
- 149A. Pesce, A. Hornés, M. Núñez, A. Morata, M. Torrell, A. Tarancón, J. Mater. Chem. A 2020, 8, 16926.
- 150R. Liu, L. Cao, D. Liu, Z. Lian, Z. Wang, Colloids Surf., A 2024, 702, 134898.
- 151M. Nayfeh, in Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines, Elsevier, Amsterdam 2018, pp. 89–137.
- 152J. Cao, X. Xiong, Y. Liu, J. Sun, J. Zhou, Mater. Chem. Phys. 2023, 305, 127965.
- 153C. Zhu, H. Ekinci, A. Pan, B. Cui, X. Zhu, Microsyst. Nanoeng. 2024, 10, 52.
- 154J. Malowney, N. Mestres, X. Borrise, A. Calleja, R. Guzman, J. Llobet, J. Arbiol, T. Puig, X. Obradors, J. Bausells, Microelectron. Eng. 2013, 110, 94.
- 155G. Yoon, I. Kim, S. So, J. Mun, M. Kim, J. Rho, Sci. Rep. 2017, 7, 6668.
- 156D. Ji, T. Li, H. Fuchs, Nano Today 2020, 31, 100843.
- 157N. Bassim, K. Scott, L. A. Giannuzzi, MRS Bull. 2014, 39, 317.
- 158P. R. Shearing, Q. Cai, J. I. Golbert, V. Yufit, C. S. Adjiman, N. P. Brandon, J. Power Sources 2010, 195, 4804.