Modulating the Iron Microenvironment for a Cooperative Interplay Between Fe-N-C Single Atoms and Fe3C Nanoclusters on the Oxygen Reduction Reaction
Anthony Dessalle
Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, F-88000 France
CNRS, Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA), Université de Lorraine, Vandœuvre-lès-Nancy, F-54500 France
Search for more papers by this authorJavier Quílez-Bermejo
Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, F-88000 France
Search for more papers by this authorJean Wilfried Hounfodji
CNRS, Laboratoire Lorrain de Chimie Moléculaire (L2CM), Université de Lorraine, Metz, F-57000 France
Search for more papers by this authorMichael Badawi
CNRS, Laboratoire Lorrain de Chimie Moléculaire (L2CM), Université de Lorraine, Metz, F-57000 France
Search for more papers by this authorAndrea Zitolo
Synchrotron SOLEIL, Départementale 128, Saint Aubin, 91190 France
Search for more papers by this authorMélanie Emo
Institut Jean Lamour (IJL), Université de Lorraine, Nancy, 54011 France
Search for more papers by this authorMaría T. Izquierdo
Instituto de Carboquímica (ICB-CSIC), Miguel Luesma Castán 4, Zaragoza, E-50018 Spain
Search for more papers by this authorFeina Xu
CNRS, Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA), Université de Lorraine, Vandœuvre-lès-Nancy, F-54500 France
Search for more papers by this authorVanessa Fierro
Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, F-88000 France
Search for more papers by this authorCorresponding Author
Alain Celzard
Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, F-88000 France
Institut Universitaire de France (IUF), Paris, F-75231 France
E-mail: [email protected]
Search for more papers by this authorAnthony Dessalle
Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, F-88000 France
CNRS, Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA), Université de Lorraine, Vandœuvre-lès-Nancy, F-54500 France
Search for more papers by this authorJavier Quílez-Bermejo
Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, F-88000 France
Search for more papers by this authorJean Wilfried Hounfodji
CNRS, Laboratoire Lorrain de Chimie Moléculaire (L2CM), Université de Lorraine, Metz, F-57000 France
Search for more papers by this authorMichael Badawi
CNRS, Laboratoire Lorrain de Chimie Moléculaire (L2CM), Université de Lorraine, Metz, F-57000 France
Search for more papers by this authorAndrea Zitolo
Synchrotron SOLEIL, Départementale 128, Saint Aubin, 91190 France
Search for more papers by this authorMélanie Emo
Institut Jean Lamour (IJL), Université de Lorraine, Nancy, 54011 France
Search for more papers by this authorMaría T. Izquierdo
Instituto de Carboquímica (ICB-CSIC), Miguel Luesma Castán 4, Zaragoza, E-50018 Spain
Search for more papers by this authorFeina Xu
CNRS, Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA), Université de Lorraine, Vandœuvre-lès-Nancy, F-54500 France
Search for more papers by this authorVanessa Fierro
Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, F-88000 France
Search for more papers by this authorCorresponding Author
Alain Celzard
Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine, Épinal, F-88000 France
Institut Universitaire de France (IUF), Paris, F-75231 France
E-mail: [email protected]
Search for more papers by this authorAbstract
The coexistence of single atoms and nanoparticles is shown to increase the oxygen reduction performance in Fe-N-C electrocatalysts, but the mechanisms underlying this synergistic effect remain elusive. In this study, model Fe-N-C electrocatalysts with controlled ratios of FeN4 sites and Fe3C nanoclusters is systematically designed and synthesized. Experiments and density functional theory (DFT) computations reveal that Fe3C nanoclusters near FeN4 sites modulate the electron density of the Fe single-atom microenvironment through an electron withdrawing effect. This substantially alters the oxygen reduction reaction (ORR) mechanisms and boosts the catalytic performance of FeN4 sites. This study provides fundamental insights into the dynamic catalytic impact of single atoms and nanoparticle coexistence in advanced Fe-N-C electrocatalysts for the ORR, paving the way for further refinement through various combinations.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202409474-sup-0001-SuppMat.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. K. Debe, Nature 2012, 486, 43.
- 2C. Sealy, Mater. Today 2008, 11, 65.
- 3M. Borghei, J. Lehtonen, L. Liu, O. J. Rojas, Adv. Mater. 2018, 30, 1703691.
- 4A. Dessalle, J. Quílez-Bermejo, V. Fierro, F. Xu, A. Celzard, Carbon 2023, 203, 237.
- 5X. Li, D. Wang, S. Zha, Y. Chu, L. Pan, M. Wu, C. Liu, W. Wang, N. Mitsuzaki, Z. Chen, Int. J. Hydrog. Energy 2024, 51, 1110.
- 6H. Shen, T. Thomas, S. A. Rasaki, A. Saad, C. Hu, J. Wang, M. Yang, Electrochem. Energy Rev. 2019, 2, 252.
- 7C. Zhao, B. Li, J. Liu, Q. Zhang, Angew. Chem., Int. Ed. 2021, 60, 4448.
- 8A. Mehmood, M. Gong, F. Jaouen, A. Roy, A. Zitolo, A. Khan, M.-T. Sougrati, M. Primbs, A. M. Bonastre, D. Fongalland, G. Drazic, P. Strasser, A. Kucernak, Nat. Catal. 2022, 5, 311.
- 9X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2019, 2, 259.
- 10D. Qi, Y. Liu, M. Hu, X. Peng, Y. Qiu, S. Zhang, W. Liu, H. Li, G. Hu, L. Zhuo, Y. Qin, J. He, G. Qi, J. Sun, J. Luo, X. Liu, Small 2020, 16, 2004855.
- 11R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen, L. Wang, J. Am. Chem. Soc. 2018, 140, 11594.
- 12K. Liu, J. Fu, Y. Lin, T. Luo, G. Ni, H. Li, Z. Lin, M. Liu, Nat. Commun. 2022, 13, 2075.
- 13H. Xie, B. Du, X. Huang, D. Zeng, H. Meng, H. Lin, W. Li, T. Asefa, Y. Meng, Small 2023, 19, 2303214.
- 14X. Ao, Y. Ding, G. Nam, L. Soule, P. Jing, B. Zhao, J. Y. Hwang, J.-H. Jang, C. Wang, M. Liu, Small 2022, 18, 2203326.
- 15A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65.
- 16B. Bayatsarmadi, Y. Zheng, A. Vasileff, S. Qiao, Small 2017, 13, 1700191.
- 17X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740.
- 18Y. Zhou, J. Li, X. Gao, W. Chu, G. Gao, L.-W. Wang, J. Mater. Chem. A 2021, 9, 9979.
- 19W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, L.-J. Wan, J. Am. Chem. Soc. 2016, 138, 3570.
- 20A. Han, W. Sun, X. Wan, D. Cai, X. Wang, F. Li, J. Shui, D. Wang, Angew. Chem., Int. Ed. 2023, 62, 202303185.
- 21A. Han, X. Wang, K. Tang, Z. Zhang, C. Ye, K. Kong, H. Hu, L. Zheng, P. Jiang, C. Zhao, Q. Zhang, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2021, 60, 19262.
- 22J. Quílez-Bermejo, S. Pérez-Rodríguez, R. Canevesi, D. Torres, E. Morallón, D. Cazorla-Amorós, A. Celzard, V. Fierro, Carbon 2022, 196, 708.
- 23H. Adabi, A. Shakouri, N. Ul Hassan, J. R. Varcoe, B. Zulevi, A. Serov, J. R. Regalbuto, W. E. Mustain, Nat. Energy 2021, 6, 834.
- 24M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87, 1051.
- 25J. Quílez-Bermejo, S. Pérez-Rodríguez, D. Torres, R. Canevesi, E. Morallón, D. Cazorla-Amorós, A. Celzard, V. Fierro, J. Colloid Interface Sci. 2024, 654, 446.
- 26J. Quílez-Bermejo, M. Melle-Franco, E. San-Fabián, E. Morallón, D. Cazorla-Amorós, J. Mater. Chem. A 2019, 7, 24239.
- 27J. Quílez-Bermejo, C. González-Gaitán, E. Morallón, D. Cazorla-Amorós, Carbon 2017, 119, 62.
- 28J. Quílez-Bermejo, E. Morallón, D. Cazorla-Amorós, Chem. Commun. 2018, 54, 4441.
- 29U. I. Kramm, J. Herranz, N. Larouche, T. M. Arruda, M. Lefèvre, F. Jaouen, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, S. Mukerjee, J.-P. Dodelet, Phys. Chem. Chem. Phys. 2012, 14, 11673.
- 30H. Ge, N. Bibent, K. Teixeira Santos, K. Kumar, J. Jaxel, M.-T. Sougrati, A. Zitolo, M. Dupont, F. Lecoeur, M. Mermoux, V. Martin, L. Dubau, F. Jaouen, F. Maillard, S. Berthon-Fabry, ACS Catal. 2023, 13, 1149.
- 31K. Qian, H. Chen, W. Li, Z. Ao, Y. Wu, X. Guan, Environ. Sci. Technol. 2021, 55, 7034.
- 32P. Xia, Z. Ye, L. Zhao, Q. Xue, S. Lanzalaco, Q. He, X. Qi, I. Sirés, Appl. Catal. B Environ. 2023, 322, 122116.
- 33X. Wan, Q. Liu, J. Liu, S. Liu, X. Liu, L. Zheng, J. Shang, R. Yu, J. Shui, Nat. Commun. 2022, 13, 2963.
- 34Q. Ma, H. Jin, J. Zhu, Z. Li, H. Xu, B. Liu, Z. Zhang, J. Ma, S. Mu, Adv. Sci. 2021, 8, 2102209.
- 35Z.-Y. Wu, X.-X. Xu, B.-C. Hu, H.-W. Liang, Y. Lin, L.-F. Chen, S.-H. Yu, Angew. Chem., Int. Ed. 2015, 54, 8179.
- 36Y. Liu, H. Jiang, Y. Zhu, X. Yang, C. Li, J. Mater. Chem. A 2016, 4, 1694.
- 37J. Quílez-Bermejo, S. García-Dalí, A. Daouli, A. Zitolo, R. L. S. Canevesi, M. Emo, M. T. Izquierdo, M. Badawi, A. Celzard, V. Fierro, Adv. Funct. Mater. 2023, 33, 2300405.
- 38G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. L. Brett, A. B. Fuertes, M. Sevilla, M.-M. Titirici, ACS Nano 2016, 10, 5922.
- 39B. Ricciardi, B. Mecheri, W. da Silva Freitas, V. C. A. Ficca, E. Placidi, I. Gatto, A. Carbone, A. Capasso, A. D'Epifanio, ChemElectroChem 2023, 10, 202201115.
- 40S. Zha, D. Wang, X. Li, J. Wang, Y. Chu, N. Mitsuzaki, Z. Chen, J. Energy Storage 2024, 96, 112672.
10.1016/j.est.2024.112672 Google Scholar
- 41Z. Li, L. Wei, W.-J. Jiang, Z. Hu, H. Luo, W. Zhao, T. Xu, W. Wu, M. Wu, J.-S. Hu, Appl. Catal. B Environ. 2019, 251, 240.
- 42J. H. Kim, Y. J. Sa, H. Y. Jeong, S. H. Joo, ACS Appl. Mater. Interfaces 2017, 9, 9567.
- 43S. Zhao, J. Li, R. Wang, J. Cai, S. Zang, Adv. Mater. 2022, 34, 2107291.
- 44S. Hu, W. Ni, D. Yang, C. Ma, J. Zhang, J. Duan, Y. Gao, S. Zhang, Carbon 2020, 162, 245.
- 45G. Zhang, X. Liu, P. Yu, D. Shen, B. Liu, Q. Pan, L. Wang, H. Fu, Chin. Chem. Lett. 2022, 33, 3903.
- 46G.-S. Kang, J.-H. Jang, S.-Y. Son, C.-H. Lee, Y.-K. Lee, D. C. Lee, S. J. Yoo, S. Lee, H.-I. Joh, J. Mater. Chem. A 2020, 8, 22379.
- 47T. Xie, J. Hu, Q. Xu, C. Zhou, J. Colloid Interface Sci. 2023, 630, 688.
- 48Y. Zang, H. Zhang, X. Zhang, R. Liu, S. Liu, G. Wang, Y. Zhang, H. Zhao, Nano Res. 2016, 9, 2123.
- 49G. Chen, P. Liu, Z. Liao, F. Sun, Y. He, H. Zhong, T. Zhang, E. Zschech, M. Chen, G. Wu, J. Zhang, X. Feng, Adv. Mater. 2020, 32, 1907399.
- 50J. Wang, H. Wu, D. Gao, S. Miao, G. Wang, X. Bao, Nano Energy 2015, 13, 387.
- 51H. Jiang, Y. Yao, Y. Zhu, Y. Liu, Y. Su, X. Yang, C. Li, ACS Appl. Mater. Interfaces 2015, 7, 21511.
- 52M. Mazzucato, C. Durante, Electrochim. Acta 2023, 463, 142801.
- 53M. Xiao, Z. Xing, Z. Jin, C. Liu, J. Ge, J. Zhu, Y. Wang, X. Zhao, Z. Chen, Adv. Mater. 2020, 32, 2004900.
- 54L. Lin, Q. Zhu, A.-W. Xu, J. Am. Chem. Soc. 2014, 136, 11027.
- 55X. Zhang, S. Zhang, Y. Yang, L. Wang, Z. Mu, H. Zhu, X. Zhu, H. Xing, H. Xia, B. Huang, J. Li, S. Guo, E. Wang, Adv. Mater. 2020, 32, 1906905.
- 56Y. Pan, S. Liu, K. Sun, X. Chen, B. Wang, K. Wu, X. Cao, W.-C. Cheong, R. Shen, A. Han, Z. Chen, L. Zheng, J. Luo, Y. Lin, Y. Liu, D. Wang, Q. Peng, Q. Zhang, C. Chen, Y. Li, Angew. Chem., Int. Ed. 2018, 57, 8614.
- 57Y. Jiang, H. Xu, B. Ma, Z. Zhang, Y. Zhou, Fuel 2024, 366, 131404.
- 58G. Lu, X. Men, R. Tang, Z. Wang, H. Cui, T. Zheng, M. Wang, H. Yang, Z. Liu, J. Colloid Interface Sci. 2024, 655, 90.
- 59H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, P. Zelenay, Science 2017, 357, 479.
- 60X. Ao, W. Zhang, Z. Li, J.-G. Li, L. Soule, X. Huang, W.-H. Chiang, H. M. Chen, C. Wang, M. Liu, X. C. Zeng, ACS Nano 2019, 13, 11853.
- 61M. Liu, J. Lee, T. Yang, F. Zheng, J. Zhao, C. Yang, L. Y. S. Lee, Small Methods 2021, 5, 2001165.
- 62J. Quílez-Bermejo, A. Daouli, S. G. Dalí, Y. Cui, A. Zitolo, J. Castro-Gutiérrez, M. Emo, M. T. Izquierdo, W. Mustain, M. Badawi, A. Celzard, V. Fierro, Adv. Funct. Mater. 2024, n/a, 2403810.
10.1002/adfm.202403810 Google Scholar
- 63B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537.
- 64J. Jagiello, J. P. Olivier, Carbon 2013, 55, 70.
- 65L. Bouleau, S. Pérez-Rodríguez, J. Quílez-Bermejo, M. T. Izquierdo, F. Xu, V. Fierro, A. Celzard, Carbon 2022, 189, 349.
- 66G. Zhang, Q. Wei, X. Yang, A. C. Tavares, S. Sun, Appl. Catal. B Environ. 2017, 206, 115.
- 67G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443.
- 68G. Lemes, D. Sebastián, E. Pastor, M. J. Lázaro, J. Power Sources 2019, 438, 227036.
- 69H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B Environ. 2005, 56, 9.
- 70K. Zhour, A. Daouli, A. Postnikov, A. Hasnaoui, M. Badawi, Phys. Chem. Chem. Phys. 2023, 25, 26461.
- 71E. Skúlason, G. S. Karlberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jónsson, J. K. Nørskov, Phys. Chem. Chem. Phys. 2007, 9, 3241.
- 72G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
- 73J. Hafner, J. Comput. Chem. 2008, 29, 2044.
- 74J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 75S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 76S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 77A. Daouli, E. P. Hessou, H. Monnier, M.-A. Dziurla, A. Hasnaoui, G. Maurin, M. Badawi, Phys. Chem. Chem. Phys. 2022, 24, 15565.
- 78G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.