Constructing Dense CoRu-CoMoO4 Heterointerfaces with Electron Redistribution for Synergistically Boosted Alkaline Electrocatalytic Water Splitting
Huamei Tong
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorShengjie Xu
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorXinyu Zheng
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorMengyue Qi
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorJianjun Zhu
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorCorresponding Author
Di Li
Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Deli Jiang
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHuamei Tong
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorShengjie Xu
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorXinyu Zheng
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorMengyue Qi
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorJianjun Zhu
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorCorresponding Author
Di Li
Institute for Energy Research, Jiangsu University, Zhenjiang, 212013 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Deli Jiang
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Constructing metal alloys/metal oxides heterostructured electrocatalysts with abundant and strongly coupling interfaces is vital yet challenging for practical electrocatalytic water splitting. Herein, CoRu nanoalloys uniformly anchored on CoMoO4 nanosheet heterostructured electrocatalyst (CoRu-CoMoO4/NF) are synthesized via a self-templated strategy by simply annealing of Ru-etched CoMoO4/NF precursor in a reduction atmosphere. The dense and robustly coupled interface not only provides abundant active sites for water splitting but also strengthens the charge transfer efficiency. Furthermore, the theoretical calculations unveil that the strong electronic interaction at CoRu-CoMoO4 interface can induce an interfacial electron redistribution and reduce the energetic barriers for the hydrogen and oxygen intermediates, thereby accelerating the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) kinetics. The resultant catalyst only requires the overpotentials of 49 mV for HER and 209 mV for OER at 10 mA cm−2. Moreover, the constructed CoRu-CoMoO4||CoRu-CoMoO4 two-electrode cell achieves a cell voltage of 1.54 V at 10 mA cm−2, outperforming the benchmark Pt/C||IrO2. This work explores an avenue for the rational design of heterostructured electrocatalysts with abundant interfaces for practical water-splitting electrocatalysis.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202409159-sup-0001-SuppMat.docx9.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Y. Ma, J. Deng, Y. P. Xu, W. Y. Tao, X. Q. Wang, Z. P. Lin, Q. H. Zhang, L. Gu, W. W. Zhong, J. Energy Chem. 2022, 66, 560.
- 2Y. Z. Chen, Q. H. Li, Y. X. Lin, J. Liu, J. Pan, J. G. Hu, X. Y. Xu, Nat. Commun. 2024, 15, 7278.
- 3J. Q. Ma, X. L. Wang, J. N. Song, Y. F. Tang, T. M. Sun, L. J. Liu, J. Wang, J. C. Wang, M. H. Yang, Angew. Chem., Int. Ed. 2024, 63, 202319153.
- 4Y. X. Hao, S. F. Hung, L. Q. Wang, L. M. Deng, W. J. Zeng, C. C. Zhang, Z. Y. Lin, C. H. Kuo, Y. Wang, Y. Zhang, H. Y. Chen, F. Hu, L. L. Li, S. J. Peng, Nat. Commun. 2024, 15, 8015.
- 5X. Li, C. Deng, Y. Kong, Q. H. Huo, L. R. Mi, J. J. Sun, J. Y. Cao, J. X. Shao, X. B. Chen, W. L. Zhou, M. Y. Lv, X. Y. Chai, H. P. Yang, Q. Hu, C. X. He, Angew. Chem., Int. Ed. 2023, 62, 202309732.
- 6D. W. Lai, Q. L. Kang, F. Gao, Q. Y. Lu, J. Mater. Chem. A. 2021, 9, 17913.
- 7M. J. Zang, N. Xu, G. X. Cao, Z. J. Chen, J. Cui, L. Y. Gan, H. B. Dai, X. F. Yang, P. Wang, ACS Catal. 2018, 8, 5062.
- 8M. Y. Hou, L. R. Zheng, D. Zhao, J. T. Fu, T. X. Wei, M. H. Cao, X. Tan, W. Y. Feng, J. T. Zhang, C. Chen, Nat. Commun. 2024, 15, 1342.
- 9S. Zhao, S. X. Li, S. F. Hung, L. M. Deng, W. J. Zeng, C. H. Kuo, H. Y. Chen, T. Xiao, F. Hu, S. J. Peng, Nat. Commun. 2024, 15, 2728.
- 10K. Sun, Y. Zhao, J. Yin, J. Jin, H. Liu, P. Xi, Acta Phys. – Chim. Sin. 2022, 38, 2107000.
- 11H. Su, J. Jiang, N. Li, Y. Q. Gao, L. Ge, Chem. Eng. J. 2022, 446, 137226.
- 12Z. L. Wang, G. F. Qian, T. Q. Yu, J. L. Chen, F. Shen, L. Luo, Y. J. Zou, S. B. Yin, Chem. Eng. J. 2022, 434, 134669.
- 13M. Z. Gu, X. Y. Deng, M. Lin, H. Wang, A. Gao, X. M. Huang, X. J. Zhang, Adv. Energy Mater. 2021, 11, 2102361.
- 14H. Y. Liao, X. Z. Guo, Y. Hou, H. Liang, Z. Zhou, H. Yang, Small 2020, 16, 1905223.
- 15S. Liu, E. H. Zhang, X. D. Wan, R. R. Pan, Y. M. Li, X. M. Zhang, M. Y. Su, J. Liu, J. T. Zhang, Sci. China Mater. 2022, 65, 131.
- 16X. Q. Mu, J. N. Gu, F. Y. Feng, Z. Y. Xiao, C. Y. Chen, S. L. Liu, S. C. Mu, Adv. Sci. 2020, 8, 2002341.
10.1002/advs.202002341 Google Scholar
- 17G. G. Liu, W. Zhou, B. Chen, Q. H. Zhang, X. Y. Cui, B. Li, Z. C. Lai, Y. Chen, Z. C. Zhang, L. Gu, H. Zhang, Nano Energy 2019, 66, 104173.
- 18W. D. Li, Y. X. Zhao, Y. Liu, M. Z. Sun, G. I. N. Waterhouse, B. L. Huang, K. Zhang, T. R. Zhang, S. Y. Lu, Angew. Chem., Int. Ed. 2021, 60, 3290.
- 19Y. Liu, S. C. Sun, X. Y. Zheng, D. Li, J. J. Zhu, M. M. Zhang, D. L. Jiang, Inorg. Chem. 2022, 61, 17557.
- 20S. Jeong, K. L. Hu, T. Ohto, Y. Nagata, H. Masuda, J. Fujita, Y. Ito, ACS Catal. 2020, 10, 792.
- 21T. Kwon, M. Jun, J. Joo, K. Lee, J. Mater. Chem. A 2019, 7, 5090.
- 22D. L. Jiang, S. J. Xu, M. H. Gao, Y. K. Lu, Y. Liu, S. C. Sun, D. Li, Inorg. Chem. 2021, 11, 8189.
10.1021/acs.inorgchem.1c00841 Google Scholar
- 23J. Y. Chen, Y. C. Ge, Q. Y. Feng, P. Y. Zhuang, H. Chu, Y. D. Cao, W. R. Smith, P. Dong, M. X. Ye, J. F. Shen, ACS Appl. Mater. Interfaces 2019, 11, 9002.
- 24S. Sajjad, C. Wang, X. F. Wang, T. Ali, T. Qian, C. L. Yan, Nanotechnology 2020, 31, 495404.
- 25J. Zhang, T. Wang, P. Liu, Z. Q. Liao, S. H. Liu, X. D. Zhuang, M. W. Chen, E. Zschech, X. L. Feng, Nat. Commun. 2017, 8, 15437.
- 26Y. Wang, H. Y. Zhuo, X. Zhang, X. P. Dai, K. M. Yu, C. L. Luan, L. Yu, Y. Xiao, J. Li, M. L. Wang, F. Gao, Nano Energy 2018, 48, 590.
- 27B. Zhang, J. Liu, J. S. Wang, Y. J. Ruan, X. Ji, K. Xu, C. Chen, H. Z. Wan, L. Miao, J. J. Jiang, Nano Energy 2017, 37, 74.
- 28Y. Liu, Y. Y. Xing, S. J. Xu, Y. K. Lu, S. C. Sun, D. L. Jiang, Chem. Eng. J. 2022, 431, 133240.
- 29K. L. Liu, F. M. Wang, P. He, T. A. Shifa, Z. X. Wang, Z. Z. Cheng, X. Y. Zhan, J. He, Adv. Energy Mater. 2018, 8, 1703290.
- 30Y. X. Tuo, X. Y. Wang, C. Chen, X. Feng, Z. Q. Liu, Y. Zhou, J. Zhang, Electrochim. Acta 2020, 335, 135682.
- 31J. Zhang, Q. Y. Zhang, X. L. Feng, Adv. Mater. 2019, 31, 1808167.
- 32L. C. Xia, L. L. Bo, W. P. Shi, Y. N. Zhang, Y. X. Shen, X. C. Ji, X. L. Guan, Y. X. Wang, J. H. Tong, Chem. Eng. J. 2023, 452, 139250.
- 33Q. S. Zhou, X. W. Peng, L. X. Zhong, R. C. Sun, Environ. Sci. Technol. 2020, 1, 100004.
- 34Y. Hu, Z. Y. Luo, M. Guo, J. X. Dong, P. X. Yan, C. Hu, T. Isimjan, X. L. Yang, Chem. Eng. J. 2022, 435, 134795.
- 35S. H. Xun, Y. Xu, J. J. He, D. L. Jiang, R. Yang, D. Li, M. Chen, J. Alloys Compd. 2019, 806, 1097.
- 36S. Liu, F. M. Wang, J. W. Wang, Z. Wang, X. Y. He, T. X. Zhang, Z. W. Zhang, Q. Liu, X. J. Liu, X. B. Zhang, Appl. Catal. B: Environ. 2024, 355, 124148.
- 37D. Li, Y. Y. Qin, J. Liu, H. Y. Zhao, Z. J. Sun, G. B. Chen, D. Y. Wu, Y. Q. Su, S. J. Ding, C. H. Xiao, Adv. Funct. Mater. 2022, 32, 2107056.
- 38X. Xu, H. F. Liang, F. W. Ming, Z. B. Qi, Y. Q. Xie, Z. C. Wang, ACS Catal. 2017, 7, 6394.
- 39R. Yang, Y. M. Zhou, Y. Y. Xing, D. Li, D. L. Jiang, M. Chen, W. D. Shi, S. Q. Yuan, Appl. Catal. B: Environ. 2019, 253, 131.
- 40W. W. Xie, J. H. Huang, L. T. Huang, S. P. Geng, S. Q. Song, P. Tsiakaras, Y. Wang, Appl. Catal. B: Environ. 2022, 303, 120871.
- 41H. Zhang, H. Su, M. A. Soldatov, Y. L. Li, X. Zhao, M. H. Liu, W. L. Zhou, X. X. Zhang, X. Sun, Y. Z. Xu, P. Yao, S. Q. Wei, Q. H. Liu, Small 2021, 17, 2105231.
- 42Q. Zhang, P. Li, D. Zhou, Z. Chang, Y. Kuang, X. Sun, Small 2017, 13, 1701648.
- 43Z. Liu, L. L. Zeng, J. Y. Yu, L. J. Yang, J. Zhang, X. L. Zhang, F. Han, L. L. Zhao, X. Li, H. Liu, W. J. Zhou, Nano Energy 2021, 85, 105940.
- 44B. Fei, Z. Chen, Y. Ha, R. Wang, H. Yang, H. Xu, R. Wu, Chem. Eng. J. 2020, 394, 124926.
- 45D. Tantraviwat, S. Anuchai, K. Ounnunkad, S. Saipanya, N. Aroonyadet, G. Rujijanagul, B. Inceesungvorn, J. Mater. Sci. Mater. Electron. 2018, 29, 13103.
- 46M. Q. Yang, J. Wang, H. Wu, G. W. Ho, Small 2018, 14, 1703323.
- 47H. B. Xiao, K. Chi, H. X. Yin, X. J. Zhou, P. X. Lei, P. Z. Liu, J. K. Fang, X. H. Li, S. L. Yuan, Z. Zhang, Y. Q. Su, J. J. Guo, L. H. Qian, Energy Environ. Mater. 2024, 7, e12495.
- 48R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011, 334, 1256.
- 49S. W. Wen, T. Yang, N. Q. Zhao, L. Y. Ma, E. Z. Liu, Appl. Catal. B: Environ. 2019, 258, 117953.
- 50D. L. Jiang, S. J. Xu, M. H. Gao, Y. Lu, Y. K. Liu, S. Sun, D. Li, Inorg. Chem. 2019, 60, 8189.
10.1021/acs.inorgchem.1c00841 Google Scholar
- 51W. H. Luo, Y. Wang, L. X. Luo, S. Gong, M. N. Wei, Y. X. Li, X. P. Gan, Y. Y. Zhao, Z. H. Zhu, Z. Li, ACS Catal. 2022, 12, 1167.
- 52B. H. Deng, G. Q. Yu, W. Zhao, Y. Z. Long, C. Yang, P. Du, X. He, Z. Zhang, K. Huang, X. B. Li, H. Wu, Energy Environ. Sci. 2023, 16, 5210.
- 53H. Y. Zhong, Q. Zhang, J. C. Yu, X. Zhang, C. Wu, Y. F. Ma, H. An, H. Wang, J. Zhang, X. P. Wang, J. M. Xue, Adv. Energy Mater. 2023, 13, 2301391.
- 54Y. F. Sun, Y. L. Chen, X. Y. Zhang, Y. R. He, Z. X. Qiu, W. T. Zheng, F. Wang, H. J. Jiao, Y. Yang, Y. W. Li, X. D. Wen, Angew. Chem., Int. Ed. 2021, 60, 25538.
- 55H. X. Chen, X. F. Zhang, S. P. Geng, S. Q. Song, Y. Wang, Small Methods 2022, 6, 2200636.
- 56C. L. Luan, J. Angona, A. Krishnan, M. Corva, P. Hosseini, M. Heidelmann, U. Hagemann, E. Tetteh, W. Schuhmann, K. Tschulik, T. Li, Angew. Chem., Int. Ed. 2023, 62, 2023059.
- 57G. Solomon, A. Landström, R. Mazzaro, M. Jugovac, P. Moras, E. Cattaruzza, V. Morandi, I. Concina, A. Vomiero, Adv. Energy Mater. 2021, 11, 2101324.
- 58J. Liu, J. H. Ren, Y. M. Du, X. Chen, M. M. Wang, Y. R. Liu, L. Wang, Adv. Funct. Mater. 2024, 34, 2315773.
- 59Y. N. Chang, X. Y. Lu, S. S. Wang, X. X. Li, Z. Y. Yuan, J. C. Bao, Y. Liu, Small 2024, 20, 2311763.
- 60S. C. Zhang, C. H. Tan, R. P. Yan, X. F. Zou, F. L. Hu, Y. Mi, C. Yan, S. L. Zhao, Angew. Chem., Int. Ed. 2023, 62, 202302795.
- 61X. Zhao, M. Liu, Y. Wang, Y. Xiong, P. Yang, J. Qin, X. Xiong, Y. Lei, ACS Nano 2022, 16, 19959.
- 62K. L. Zhou, Z. Wang, C. B. Han, X. Ke, C. Wang, Y. Jin, Q. Zhang, J. Liu, H. Wang, H. Yan, Nat. Commun. 2021, 12, 3783.