Waste-To-Energy: Sustainable Triboelectric Stimulating System Constructed by Bone Gelatin Based Triboelectric Nanogenerator for Crop Growth
Corresponding Author
Dangge Gao
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021 China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHaoyuan Wu
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021 China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorCorresponding Author
Bin Lyu
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021 China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorChi Zheng
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021 China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorYingying Zhou
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021 China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorCorresponding Author
Jianzhong Ma
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021 China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dangge Gao
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021 China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHaoyuan Wu
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021 China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorCorresponding Author
Bin Lyu
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021 China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorChi Zheng
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021 China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorYingying Zhou
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021 China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021 China
Search for more papers by this authorCorresponding Author
Jianzhong Ma
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 China
Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021 China
National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The misuse of synthetic chemicals such as pesticides and fertilizers harms the environment and human health. Abandoning them risks global food shortages. Urgent eco-friendly alternatives are needed for food production without excessive synthetic chemicals. To respond to this challenge, an innovative approach uses POSS polymer (PA) to modify waste bone gelatin (BG), constructinging a biodegradable triboelectric nanogenerator (PAG-TENG) tailored for the triboelectric stimulating system for seed germination (PTSS). Amide groups of PA improve the electron supplying capacity of BG and 3D cage structure captures and transfers charges of BG, thereby improving the output performance of PAG-TENG. The spatial electrostatic field formed by PAG-TENG promotes seed germination when subjected to pressure changes in the environment. Hence output performance of PAG-TENG is improved from 52.34 V and 40.25 nA to 247.15 V and 482.12 nA, the sensitivity is 14.4957 V*kPa−1. It maintains initial stable performance after the 6000 cycles of testing. Besides, the prepared PAG-TENG has good toughness, translucency, and degradability. Treated by the high voltage electrostatic field of PTSS, peas' germination rate remarkably increased by ≈27%. This work realizes the high-value utilization of waste resource BG, and provides a novel direction for the development of intelligent agriculture.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
smll202408925-sup-0001-SuppMat.docx2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Vos, N. Minot, B. Rice, GNAF Crises, 2021 Global Report on Food Crises, September 2021.
- 2P. C. Kesavan, M. S. Swaminathan, Curr. Sci. India 2018, 115, 1876.
- 3A. Sarkozi, Food and Agriculture Organization of the United Nations, Roma, Italy 2019.
- 4A. Ghorbani, A. Emamverdian, N. Pehlivan, M. Zargar, S. M. Razavi, M. Chen, J. Nanobiotechnol. 2024, 22, 91.
- 5Q. Liu, D. Wu, Y. Pan, Y. Shen, X. Wang, F. Xiong, J. Han, Z. Zhang, Y. Chen, Z. Chen, S. Yuan, H. Yu, W. Yao, J. Hazard. Mater. 2024, 475, 134809.
- 6T. Yang, Y. Mei, L. Xu, H. Yu, Y. Chen, Conservat. Recycl. 2024, 204, 107497.
10.1016/j.resconrec.2024.107497 Google Scholar
- 7G. H. Sidaway, Nature 1966, 211, 303.
10.1038/211303a0 Google Scholar
- 8Y. Wang, Y. Liu, X. Liu, H. Tang, F. Huang, IEEE Trans. Plasma Sci. 2022, 50, 835.
- 9H. Nezammahalleh, F. Ghanati, T. A. Adams II, M. Nosrati, S. A. Shojaosadati, Bioresour. Technol. 2016, 218, 700.
- 10D. Dannehl, Sci. Hortic. 2018, 234, 382.
10.1016/j.scienta.2018.02.007 Google Scholar
- 11E. Costanzo, J. Electrostat. 2008, 66, 417.
- 12M. Li, Y. Wu, M. Zhang, J. Zhu, Can. J. Plant. Sci. 2017, 98, 93.
- 13J. Shi, Z. Zhao, Y. Gao, W. Yuan, W. Ma, J. Zhang, B. Zhang, D. Liu, J. Wang, Small 2024, 20, 2311930.
- 14X. Li, J. Luo, K. Han, X. Shi, Z. Ren, Y. Xi, Y. Ying, J. Ping, Z. L. Wang, Nat. Food 2022, 3, 133.
- 15C. Jiang, X. Li, Y. Ying, J. Ping, Nano Energy 2020, 74, 104863.
- 16C. Men, X. Liu, Y. Chen, S. Liu, S. Wang, S. Gao, Nano Energy 2022, 101, 107578.
- 17L. Lu, S. Fan, L. Geng, J. Lin, X. Yao, Y. Zhang, Adv. Mater. Technol. 2021, 6, 2100124.
- 18J. Luo, Z. Wang, L. Xu, A. C. Wang, K. Han, T. Jiang, Q. Lai, Y. Bai, W. Tang, F. R. Fan, Z. L. Wang, Nat. Commun. 2019, 10, 5147.
- 19J. Luo, X. Shi, P. Chen, K. Han, X. Li, X. Cao, Z. L. Wang, Mater. Today Phys. 2022, 27, 100798.
- 20K. Chen, Y. Li, G. Yang, S. Hu, Z. Shi, G. Yang, Adv. Funct. Mater. 2023, 33, 2304809.
- 21X. Shi, P. Chen, K. Han, C. Li, R. Zhang, J. Luo, Z. L. Wang, J, Mater. Chem. A. 2023, 11, 11730.
- 22F. G. Torres, G. E. De-la-Torre, Carbohydr. Polym. 2021, 251, 117055.
- 23J. Su, Y. Gao, Y. Yang, P. Fan, Z. Zhou, Z. Wang, X. Zhang, L. Fang, ACS Appl. Mater. Interfaces 2024, 16, 12417.
- 24C. Jiang, C. He, R. Lin, X. Li, Q. Zhao, Y. Ying, J. Song, J. Ping, Nano Energy 2022, 101, 107589.
- 25Z. Zheng, D. Yu, B. Wang, Y. Guo, Chem. Eng. J. 2022, 446, 137393.
- 26N. R. Alluri, N. P. M. J. Raj, G. Khandelwal, V. Vivekananthan, S. J. Kim, Nano Energy 2020, 73, 104767.
- 27H. Varghese, A. Chandran, ACS Appl. Mater. Interfaces 2021, 13, 51132.
- 28K. G. Motora, C.-M. Wu, C. R. M. Jose, G. M. Rani, Adv. Funct. Mater. 2024, 34, 2315069.
- 29G. M. Rani, C.-M. Wu, K. G. Motora, R. Umapathi, C. R. M. Jose, Nano Energy 2023, 108, 108211.
- 30T. McGauran, N. Dunne, B. M. Smyth, E. Cunningham, J. Cleaner Prod. 2021, 291, 125948.
- 31H. Zhang, W. Liu, Q. Shen, L. Zhao, C. Zhang, A. Richel, Food Chem. 2021, 356, 129619.
- 32B. Lyu, X. Lu, D. Gao, H. Wu, J. Ma, Int. J. Biol. Macromol. 2023, 247, 125829.
- 33Y. Pei, Y. Zheng, Z. Li, J. Liu, X. Zheng, K. Tang, D. L. Kaplan, J. Colloid Interface Sci. 2021, 582, 610.
- 34X. Shi, Y. Wei, R. Yan, L. Hu, J. Zhi, B. Tang, Y. Li, Z. Yao, C. Shi, H. D. Yu, W. Huang, Nano Energy 2023, 109, 108231.
- 35R. Pan, W. Xuan, J. Chen, S. Dong, H. Jin, X. Wang, H. Li, J. Luo, Nano Energy 2018, 45, 193.
- 36L. Jia, J. Ma, D. Gao, W. R. T. Tait, L. Sun, J. Hazard. Mater. 2019, 361, 305.
- 37Y. K. Chang, S. J. Hao, F. G. Wu, Small 2024, 2401762.
10.1002/smll.202401762 Google Scholar
- 38D. Gao, Y. Cheng, P. Wang, F. Li, Y. Wu, B. Lyu, J. Ma, J. Qin, J. Cleaner Prod. 2020, 257, 120546.
- 39Y. Wang, J. Lan, X. Yang, S. Zhong, L. Yuan, J. Li, J. Peng, Z. Chai, J. K. Gibson, M. Zhai, W. Shi, Adv. Funct. Mater. 2022, 32, 2205222.
- 40C. Lin, Y. Tang, W. Xu, P. Kumar, L. Dou, ACS Energy Lett. 2024, 9, 3877.
- 41Q. Zhu, X. Wang, R. Clowes, P. Cui, L. Chen, M. A. Little, A. I. Cooper, J. Am. Chem. Soc. 2020, 142, 16842.
- 42X. Nie, H. Shi, F. Wang, C. You, D. Zhang, Z. Xiao, X. Li, Food Hydrocolloids 2024, 157, 110436.
- 43L. Chen, T. Qiang, X. Chen, W. Ren, H. J. Zhang, Chem. Eng. J. 2021, 419, 129639.
- 44Y. S. Musso, P. R. Salgado, A. N. Mauri, Food Hydrocolloids 2017, 66, 8.
- 45C. Zheng, D. Gao, B. Lyu, C. Zhang, H. Li, Y. Zhou, N. Li, J. Ma, Chem. Eng. J. 2023, 477, 147071.
- 46X. Yuan, W. Kong, P. Xia, Z. Wang, Q. Gao, J. Xu, D. Shan, Q. Yao, Z. Ma, B. Guo, Y. He, Adv. Funct. Mater. 2024, 34, 2404824.
- 47T. Charoonsuk, S. Pongampai, P. Pakawanit, N. Vittayakorn, Nano Energy 2021, 89, 106430.
- 48C. Wang, H. Guo, P. Wang, J. Li, Y. Sun, D. Zhang, Adv. Mater. 2023, 35, 2209895.
- 49Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, Z. L. Wang, Adv. Mater. 2014, 26, 5851.
- 50G. M. Rani, C.-M. Wu, K. G. Motora, R. Umapathi, J. Cleaner Prod. 2022, 363, 132532.
- 51G. M. Rani, S. M. Ghoreishian, R. Umapathi, V. Vivekananthan, Y. S. Huh, Nano Energy 2024, 128, 109899.
- 52J. Kaur, R. S. Sawhney, H. Singh, M. Singh, S. K. Godara, Physica Status Solidi 2021, 218, 2100161.
- 53M. Yang, X. Tian, T. Hua, Chem. Eng. J. 2022, 442, 136150.
- 54X. Li, J. Wang, Y. Liu, T. Zhao, B. Luo, T. Liu, S. Zhang, M. Chi, C. Cai, Z. Wei, P. Zhang, S. Wang, S. Nie, Nano Lett. 2024, 24, 3273.
- 55T. G. Weldemhret, J. H. Lee, C. U. Park, D.-W. Lee, M. N. Prabhakar, Y. T. Park, J. I. Song, S. Mater, Sustainable Mater. Technol. 2024, 39, e00847.
- 56C. Li, R. Luo, Y. Bai, J. Shao, J. Ji, E. Wang, Z. Li, H. Meng, Z. Li, Adv. Funct. Mater. 2024, 34, 2400277.
- 57X. Peng, K. Dong, Y. Zhang, L. Wang, C. Wei, T. Lv, Z. L. Wang, Z. Wu, Adv. Funct. Mater. 2022, 32, 2112241.
- 58E. J. Rifna, K. R. Ramanan, R. Mahendran, Trends Food Sci. Technol. 2019, 86, 95.
- 59O. Ince-Yilmaz, T. Erol, K. Kara, et al., Feb-Fresenius Environ. Bull. 2018, 5153.
- 60M. Guo, Y. Qian, J. Yuan, Z. Song, Agronomy 2024, 14, 1235.
- 61L. I. Leti, I. C. Gerber, P. M. Galan, S. Strajeru, D. E. Petrescu, M. M. Cipeanu, I. Topala, D. L. Gorgan, Plants 2022, 11, 2181.