Interface Engineering for Improved Large-Current Oxygen Evolution via Partial Phosphorization of Ce-MOF/NiCo-MOF Heterostructure
Dan Liu
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorXuewen Xia
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorXueqiang Zhang
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorFei Wang
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorLi Tao
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorYa Gao
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorShujuan Wang
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
Search for more papers by this authorZhongya Pang
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Xing Yu
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGuangshi Li
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorHsien-Yi Hsu
Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Hong Kong, 999077 China
Search for more papers by this authorShen Hu
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Li Ji
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXionggang Lu
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Xingli Zou
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDan Liu
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorXuewen Xia
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorXueqiang Zhang
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorFei Wang
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorLi Tao
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorYa Gao
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorShujuan Wang
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
Search for more papers by this authorZhongya Pang
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Xing Yu
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGuangshi Li
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorHsien-Yi Hsu
Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Hong Kong, 999077 China
Search for more papers by this authorShen Hu
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Li Ji
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXionggang Lu
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Xingli Zou
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Interface engineering for electrocatalysts has proven to be an effective method for modulating electrocatalytic properties, yet a more efficient and straightforward strategy to construct a valid heterointerface for further enhancing interface effects is urgently needed for boosting oxygen evolution reactions (OER) at large current. Herein, a closely compacted heterostructure combining NiCo-metal-organic framework (MOF) and Ce-MOF is in situ formed through a one-step hydrothermal treatment, and partial phosphorization is employed to further enhance the interface effect between the newly formed urchin-shaped NiCoP shells and hexagonal rod-like Ce-MOF cores on nickel foam (NiCoP/Ce-MOF@NF). Experimental and theoretical results indicate that the heterogeneous NiCoP/Ce-MOF@NF, characterized by a more intensive interface rather than a simple physical mixture, generates an OER-beneficial electronic structure, significantly facilitates charge transfer and reaction kinetics, and creates a synergistically stable structure. The optimal NiCoP/Ce-MOF@NF exhibits remarkable electrocatalytic activity for OER, achieving an ultralow overpotential of 268 mV at a current density of 500 mA cm−2, and also delivers satisfactory large-current stability of up to 120 h. This work offers a novel approach for designing heterogeneous catalysts with strong interface effects for potential applications in industrial water electrolysis.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202408897-sup-0001-SuppMat.docx23.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Zang, D.-Q. Lu, K. Wang, B. Li, P. Peng, Y.-Q. Lan, S.-Q. Zang, Nat. Commun. 2023, 14, 1792.
- 2P. F. Dong, Y. M. Gu, G. H. Wen, R. A. Luo, S. S. Bao, J. Ma, J. P. Lei, Small 2023, 19, 2301473.
- 3Z. Zhang, C. Feng, D. Wang, S. Zhou, R. Wang, S. Hu, H. Li, M. Zuo, Y. Kong, J. Bao, J. Zeng, Nat. Commun. 2022, 13, 2473.
- 4a) M. Kim, S. h. Kim, J. Park, S. Lee, I. Jang, S. Kim, C. Y. Lee, O. J. Kwon, H. C. Ham, J. T. Hupp, N. Jung, S. J. Yoo, D. Whang, Adv. Funct. Mater. 2023, 33, 2300673; b) R. Chen, S. F. Hung, D. J. Zhou, J. J. Gao, C. J. Yang, H. B. Tao, H. B. Yang, L. P. Zhang, L. L. Zhang, Q. H. Xiong, H. M. Chen, B. Liu, Adv. Mater. 2019, 31, 1903909.
- 5X. Li, C. Liu, Z. Fang, L. Xu, C. Lu, W. Hou, Small 2021, 18, 2104354.
- 6J. Ding, D. Guo, N. Wang, H. F. Wang, X. Yang, K. Shen, L. Chen, Y. Li, Angew. Chem., Int. Ed. 2023, 62, 202311909.
- 7T. Sun, L. Xu, D. Wang, Y. Li, Nano Res. 2019, 12, 2067.
- 8N. Yao, H. N. Jia, Z. Y. Fan, L. Bai, W. Xie, H. J. Cong, S. L. Chen, W. Luo, J. Energy Chem. 2022, 64, 531.
- 9H. M. Duy, P. M. Park, G.-N. Bae, S. Jeong, B. Seo, M. Cho, S. Park, N. D. Cuong, T. Viet Cuong, N. M. Tran, C.-M. Park, K.-J. Jeon, J. Mater. Chem. A 2024, 12, 4761.
10.1039/D3TA07125A Google Scholar
- 10B. Xia, T. Wang, X. Jiang, J. Li, T. Zhang, P. Xi, D. Gao, D. Xue, J. Mater. Chem. A 2019, 7, 4729.
- 11X.-Z. Fan, X. Du, Q.-Q. Pang, S. Zhang, Z.-Y. Liu, X.-Z. Yue, ACS Appl. Mater. Interfaces 2022, 14, 8549.
- 12Y. Xing, S. Liu, Y. Liu, X. Xiao, Y. Li, Z. Wang, Y. Hu, B. Xin, H. Wang, C. Wang, Nano Energy 2024, 123, 109402.
- 13D. Kong, Q. Xu, N. Chu, H. Wang, Y. V. Lim, J. Cheng, S. Huang, T. Xu, X. Li, Y. Wang, Y. Luo, H. Y. Yang, Small 2024, 10, 2310012.
10.1002/smll.202310012 Google Scholar
- 14a) G. Mu, G. Wang, Q. Huang, Y. Miao, D. Wen, D. Lin, C. Xu, Y. Wan, F. Xie, W. Guo, R. Zou, Adv. Funct. Mater. 2023, 33, 2211260; b) Z. Liu, H. Li, H. S. Kang, A. T. N'Diaye, M. H. Lee, Chem. Eng. J. 2023, 454, 140403.
- 15M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn, H. Schafer, Chem. Soc. Rev. 2022, 51, 4583.
- 16A. J. Shih, M. C. O. Monteiro, F. Dattila, D. Pavesi, M. Philips, A. H. M. da Silva, R. E. Vos, K. Ojha, S. Park, O. van der Heijden, G. Marcandalli, A. Goyal, M. Villalba, X. Chen, G. T. K. K. Gunasooriya, I. McCrum, R. Mom, N. López, M. T. M. Koper, Nat. Rev. Methods Primers 2022, 2, 84.
- 17Y. Wang, B. Wang, X. Y. Liu, Y. J. Wang, Y. C. Wang, Z. Q. Liu, ACS Appl. Energy Mater. 2022, 5, 8686.
- 18N. Keshmiri, P. Najmi, M. Ramezanzadeh, B. Ramezanzadeh, J. Clean. Prod. 2021, 6, 319.
- 19K. Wang, C. Liang, S. Li, J. Li, Z. Yi, F. Xu, Y. Wang, L. Lei, M. Zhu, S. Li, L. Zhuang, Z. Xu, Sci. China Mater. 2023, 66, 2662.
- 20T. Liu, P. Li, N. Yao, G. Cheng, S. Chen, W. Luo, Y. Yin, Angew. Chem., Int. Ed. 2019, 58, 4679.
- 21K. Sun, M. Liu, J. Pei, D. Li, C. Ding, K. Wu, H. L. Jiang, Angew. Chem., Int. Ed. 2020, 59, 22749.
- 22T. O. Ogundipe, L. Shen, Y. Shi, Z. Lu, Z. Wang, H. Tan, C. Yan, Electrochim. Acta 2022, 421, 140484.
- 23Y. Dang, X. Li, Z. Chen, X. Zhao, B. Ma, Y. Chen, Small 2023, 19, 2303932.
- 24K. Liu, H. You, G. Jia, Y. Zheng, Y. Huang, Y. Song, M. Yang, L. Zhang, H. Zhang, Cryst. Growth Des. 2009, 10, 790.
- 25a) A. Navarrete, C. Manquian, L. Vivas, D. Serafini, D. P. Singh, Mater. Chem. Phys. 2024, 4, 317; b) T. Shen, T. Liu, H. Mo, Z. Yuan, F. Cui, Y. Jin, X. Chen, RSC Adv. 2020, 10, 22881; c) S. Jabarian, A. Ghaffarinejad, New J. Chem. 2020, 44, 19820.
- 26a) S. Ma, X. Qu, J. Huang, C. Zhang, G. Chen, W. Chen, T. Li, T. Shao, K. Zheng, J. Tian, C. Li, K. Ostrikov, Nano Energy 2022, 95, 106989; b) Y. Men, S. Jia, P. Li, Y. Tan, J. Wang, P. Zhao, G. Cheng, S. Chen, W. Luo, Chem. Eng. J. 2022, 433, 133831.
- 27J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu, Y. Huang, S. Yan, J. Li, S. Zhang, Energy Environ. Sci. 2019, 12, 739.
- 28D. Gao, J. Guo, H. He, P. Xiao, Y. Zhang, Chem. Eng. J. 2022, 430, 4176.
- 29T. Munawar, A. Bashir, S. Sardar, M. S. Nadeem, F. Mukhtar, S. Manzoor, M. N. Ashiq, S. A. Khan, M. Koc, F. Iqbal, J. Energy Storage 2024, 76, 109556.
10.1016/j.est.2023.109556 Google Scholar
- 30M. Sun, R. Ge, J. Yang, J. Qu, Y. Li, M. Zhu, J. M. Cairney, R. Zheng, S. Li, W. Li, Appl. Energy 2022, 326, 119999.
- 31Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou, M. Luo, J. Zhu, Z. Lang, S. Feng, W. Chen, L. Mai, S. Guo, Adv. Mater. 2018, 30, 1803220.
- 32X. Hong, C. Deng, G. Wang, X. Wang, W. Dong, Chem. Eng. J. 2023, 451,139036.
- 33H. Chen, X. Ai, W. Liu, Z. Xie, W. Feng, W. Chen, X. Zou, Angew. Chem., Int. Ed. 2019, 58, 11409.
- 34H. Liu, Y. Zhang, J. Li, R. Ge, J. M. Cairney, R. Zheng, S. Li, B. Liu, L. Dai, T. Liao, W. Li, J. Mater. Chem. A 2024, 12, 5100.
- 35a) Y. Zhang, B. Feng, M. Yan, Z. Shen, Y. Chen, J. Tian, F. Xu, G. Chen, X. Wang, L. Yang, Q. Wu, Z. Hu, Nano Res. 2023, 5, 418; b) L. Jia, G. Du, D. Han, Y. Hao, W. Zhao, Y. Fan, Q. Su, S. Ding, B. Xu, J. Mater. Chem. A 2021, 9, 27639.
- 36A. Lin, A. A. Ibrahim, P. Arab, H. M. El-Kaderi, M. S. El-Shall, ACS Appl. Mater. Interfaces 2017, 9, 17961.
- 37S. Ren, L. Liu, F. Meng, Y. Liu, Y. Xie, H.-b. Sun, Y. Yang, H. Yan, F. Wang, Energy Storage Mater. 2024, 65, 6132.
- 38Y. P. Zhang, X. J. Zheng, X. M. Guo, J. H. Zhang, A. H. Yuan, Y. K. Du, F. Gao, Appl. Catal. B-Environ. 2023, 336, 122891.
- 39J. Hu, T. Guo, X. Zhong, J. Li, Y. Mei, C. Zhang, Y. Feng, M. Sun, L. Meng, Z. Wang, B. Huang, L. Zhang, Z. Wang, Adv. Mater. 2024, 36, 2310918.
- 40Z. Li, C. Xu, Z. Zhang, S. Xia, D. Li, L. Liu, P. Chen, X. Dong, Adv. Sci. 2024, 11, 2308477.
- 41P. Yan, T. Yang, M. Lin, Y. Guo, Z. Qi, Q. Luo, X.-Y. Yu, Adv. Funct. Mater. 2023, 33, 2301343.