Cellulose Nanocrystal Composite Membrane Enhanced with In Situ Grown Metal–Organic Frameworks for Osmotic Energy Conversion
Xiuxiu Wang
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819 P. R. China
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorCorresponding Author
Minmin Li
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYuting Xiong
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorHaijuan Qin
Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457 P. R. China
Search for more papers by this authorQiongya Li
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorFusheng Zhang
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorCorresponding Author
Yong-Liang Yu
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guangyan Qing
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiuxiu Wang
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819 P. R. China
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorCorresponding Author
Minmin Li
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYuting Xiong
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorHaijuan Qin
Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457 P. R. China
Search for more papers by this authorQiongya Li
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorFusheng Zhang
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
Search for more papers by this authorCorresponding Author
Yong-Liang Yu
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guangyan Qing
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Access to clean and renewable energy, osmotic energy from salinity gradient difference, for example, is central to the sustainability of human civilization. Despite numerous examples of nanofluidic membranes for osmotic energy conversion, one produced from abundant and renewable biomass resources remains largely unexplored. In this work, cotton-derived cellulose nanocrystals (CNCs) are employed to fabricate a membrane by self-assembly with polyvinyl alcohol (PVA) and subsequent in situ growth of metal–organic framework (MOF), UiO-66-(COOH)2, to provide an example. The composite membrane exhibits excellent mechanical strength and toughness due to the long chains and hydrogen bonding interactions of PVA. The incorporation of UiO-66-(COOH)2 endows the composite membrane with abundant nano- and subnano-sized ion transport channels, resulting in a 150% increase in ion conductance, while also providing superior cation selectivity through collaboration with the sulfated CNCs. The composite membrane with 27.4% MOF content can achieve an osmotic energy conversion performance of 5.10 W m−2 under a 50-fold KCl gradient condition and a monovalent cation selectivity of ≈16 for K+/Mg2+. This work presents a solution for harvesting renewable osmotic energy by constructing nanofluidic membranes using plentiful renewable biomass materials and a simple, low-emission fabrication procedure.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202408695-sup-0001-SuppMat.docx8.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Li, C. Chen, A. H. Brozena, J. Y. Zhu, L. Xu, C. Driemeier, J. Dai, O. J. Rojas, A. Isogai, L. Wågberg, L. Hu, Nature 2021, 590, 47.
- 2a) H. Liu, Z. Wang, H. Xin, J. Liu, Q. Wang, B. Pang, K. Zhang, ACS Nano 2024, 18, 22675; b) T. Zhang, Q. Cheng, D. Ye, C. Chang, Carbohydr. Polym. 2017, 169, 139.
- 3A. K. Rana, E. Frollini, V. K. Thakur, Int. J. Biol. Macromol. 2021, 182, 1554.
- 4R. Calle-Gil, E. Castillo-Martínez, J. Carretero-González, Adv. Sustainable Syst. 2022, 6, 2100395.
- 5a) B. E. Logan, M. Elimelech, Nature 2012, 488, 313; b) Y. Zhang, H. Wang, J. Wang, L. Li, H. Sun, C. Wang, Chem. Asian J. 2023, 18, e202300876.
- 6a) X. Tong, S. Liu, J. Crittenden, Y. Chen, ACS Nano 2021, 15, 5838; b) J. Hao, B. Bao, J. Zhou, Y. Cui, X. Chen, J. Zhou, Y. Zhou, L. Jiang, Adv. Mater. 2022, 34, 2203109; c) C. Zhu, L. Xu, Y. Liu, J. Liu, J. Wang, H. Sun, Y.-Q. Lan, C. Wang, Nat. Commun. 2024, 15, 4213; d) X. Li, P. Cheng, J. Zhang, H. Nawaz, Y. Xu, F. Xu, Carbohydr. Polym. 2022, 292, 119657; e) M. Li, Y. Cao, Y. Xiong, G. Qing, NPG Asia Mater 2023, 15, 16.
- 7Q.-Y. Wu, C. Wang, R. Wang, C. Chen, J. Gao, J. Dai, D. Liu, Z. Lin, L. Hu, Adv. Energy Mater. 2020, 10, 1902590.
- 8a) B. Zhou, J. Zou, Z. Lin, Z. Yuan, X. Qin, P. Chen, D. Ye, Chem. Eng. J. 2023, 457, 141167; b) B. Zhou, Z. Lin, Z. Xie, X. Fu, Z. Yuan, C. Jiao, X. Qin, D. Ye, Nano Energy 2023, 115, 108693.
- 9a) Y. Zhou, C. Chen, X. Zhang, D. Liu, L. Xu, J. Dai, S.-C. Liou, Y. Wang, C. Li, H. Xie, Q. Wu, B. Foster, T. Li, R. M. Briber, L. Hu, J. Am. Chem. Soc. 2019, 141, 17830; b) Z. Xie, Z. Xiang, X. Fu, Z. Lin, C. Jiao, K. Zheng, M. Yang, X. Qin, D. Ye, ACS Energy Lett. 2024, 9, 2092; c) Z. Yuan, B. Zhou, K. Yuan, Z. Xie, K. Zheng, H. Wang, C. Jiao, D. Ye, Nano Energy 2024, 124, 109450; d) H. Yang, V. Gueskine, M. Berggren, I. Engquist, ACS Appl. Energy Mater. 2022, 5, 15740.
- 10a) K. Zhang, H. Wu, X. Zhang, H. Dong, S. Chen, Y. Xu, F. Xu, Int. J. Biol. Macromol. 2024, 260, 129461; b) Z. Sun, Y. Kuang, M. Ahmad, Y. Huang, S. Yin, F. Seidi, S. Wang, Carbohydr. Polym. 2023, 305, 120556; c) N. Sheng, S. Chen, M. Zhang, Z. Wu, Q. Liang, P. Ji, H. Wang, ACS Appl. Mater. Interfaces 2021, 13, 22416.
- 11Z. Xiang, Y. Chen, Z. Xie, K. Yuan, Y. Shu, P. Chen, H. Wang, D. Ye, Adv. Energy Mater. 2024, 14, 2402304.
- 12a) W. Zhao, Y. Wang, M. Han, J. Xu, L. Han, K. C. Tam, Nano Energy 2022, 98, 107291; b) X. Zhang, M. Li, F. Zhang, Q. Li, J. Xiao, Q. Lin, G. Qing, Small 2023, 19, e2304603.
- 13H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
- 14L. Jiao, J. Y. R. Seow, W. S. Skinner, Z. U. Wang, H.-L. Jiang, Mater. Today 2019, 27, 43.
- 15J. Wang, Y. Zhou, L. Jiang, Acc. Mater. Res. 2023, 4, 86.
- 16a) Y. C. Liu, L. H. Yeh, M. J. Zheng, K. C. Wu, Sci. Adv. 2021, 7, eabe9924; b) Z.-Q. Li, G.-L. Zhu, R.-J. Mo, M.-Y. Wu, X.-L. Ding, L.-Q. Huang, Z.-Q. Wu, X.-H. Xia, Angew. Chem., Int. Ed. 2022, 61, e202202698; c) Y. Liu, Y. Chen, Y. Guo, X. Wang, S. Ding, X. Sun, H. Wang, Y. Zhu, L. Jiang, ACS Nano 2022, 16, 16343; d) Z.-Q. Li, G.-L. Zhu, R.-J. Mo, M.-Y. Wu, X.-L. Ding, L.-Q. Huang, Z.-Q. Wu, X.-H. Xia, ACS Appl. Mater. Interfaces 2023, 15, 23922; e) M. Chen, K. Yang, J. Wang, H. Sun, X.-H. Xia, C. Wang, Adv. Funct. Mater. 2023, 33, 2302427; f) H. Zeng, C. Yao, C. Wu, D. Wang, W. Ma, J. Wang, Small 2024, 20, 2310811.
- 17J. Xiao, M. Cong, M. Li, X. Zhang, Y. Zhang, X. Zhao, W. Lu, Z. Guo, X. Liang, G. Qing, Adv. Funct. Mater. 2024, 34, 2307996.
- 18a) Z.-J. Yang, L.-H. Yeh, Y.-H. Peng, Y.-P. Chuang, K. C. W. Wu, Angew. Chem., Int. Ed. 2024, 63, e202408375; b) C. Chen, L. Meng, L. Cao, D. Zhang, S. An, L. Liu, J. Wang, G. Li, T. Pan, J. Shen, Z. Chen, Z. Shi, Z. Lai, Y. Han, J. Am. Chem. Soc. 2024, 146, 11855.
- 19a) X. Zhao, C. Lu, L. Yang, W. Chen, W. Xin, X.-Y. Kong, Q. Fu, L. Wen, G. Qiao, L. Jiang, Nano Energy 2021, 81, 105657;
b) B. Yao, S. Hussain, Z. Ye, X. Peng, Small 2023, 19, 2207559;
c) R. K. Tonnah, M. Chai, M. Abdollahzadeh, H. Xiao, M. Mohammad, E. Hosseini, M. Zakertabrizi, D. Jarrahbashi, A. Asadi, A. Razmjou, M. Asadnia, ACS Nano 2023, 17, 12445;
d) S. Pan, P. Liu, Q. Li, B. Zhu, X. Liu, J. Lao, J. Gao, L. Jiang, Angew. Chem., Int. Ed. 2023, 62, e202218129;
e) H. Qi, J. Zhong, W. Sun, T. Xu, Z. Xing, S. Zhao, H. Qian, H. Zhang, J. Mu, X. Zhu, L. Jiang, CCS Chem. 2024, https://doi.org/10.31635/ccschem.024.202404323.
10.31635/ccschem.024.202404323 Google Scholar
- 20a) V.-P. Mai, A. R. Fauziah, C.-R. Gu, Z.-J. Yang, K. C. W. Wu, L.-H. Yeh, R.-J. Yang, Chem. Eng. J. 2024, 484, 149649; b) W. Fu, J. Zhang, Q. Zhang, M. Ahmad, Z. Sun, Z. Li, Y. Zhu, Y. Zhou, S. Wang, Int. J. Biol. Macromol. 2024, 257, 128546.
- 21a) J. Zhou, J. Hao, R. Wu, L. Su, J. Wang, M. Qiu, B. Bao, C. Ning, C. Teng, Y. Zhou, L. Jiang, Adv. Funct. Mater. 2022, 32, 2209767; b) B. Yao, L. Wu, Z. Fang, Y. Hu, Z. Ye, X. Peng, Mater. Today Sustain. 2024, 27, 100939; c) W.-H. Lin, T.-Y. Huang, C.-H. Bai, C.-H. Hung, C.-A. Lung, W.-H. Hung, K. Gopinadhan, L.-H. Yeh, Nano Energy 2024, 128, 109924.
- 22a) M. Chen, T. Liu, X. Zhang, R. Zhang, S. Tang, Y. Yuan, Z. Xie, Y. Liu, H. Wang, K. V. Fedorovich, N. Wang, Adv. Funct. Mater. 2021, 31, 2100106; b) Z. Sun, M. Ahmad, S. Wang, Carbohydr. Polym. 2022, 289, 119406.
- 23a) Y. Liu, D. Wang, Z. Song, Z. Cui, S. Li, M. He, D. Huang, L. Wang, J. Wang, J. Membr. Sci. 2024, 694, 122421; b) Y. Su, J. Hou, C. Zhao, Q. Han, J. Hu, H. Zhang, J. Mater. Chem. A. 2024, 12, 13153; c) C. Yao, H. Zeng, C. Wu, D. Wang, W. Ma, G. Li, J. Zhou, J. Wang, J. Membr. Sci. 2024, 707, 122999; d) J. Wang, Z. Song, M. He, Y. Qian, D. Wang, Z. Cui, Y. Feng, S. Li, B. Huang, X. Kong, J. Han, L. Wang, Nat. Commun. 2024, 15, 2125.
- 24F. Zhang, D. Wang, H. Qin, L. Feng, X. Liang, G. Qing, ACS Appl. Mater. Interfaces 2019, 11, 13114.
- 25F. Zhang, W. Ge, C. Wang, X. Zheng, D. Wang, X. Zhang, X. Wang, X. Xue, G. Qing, ACS Appl. Mater. Interfaces 2021, 13, 17118.
- 26Z. Chen, X. Wang, H. Noh, G. Ayoub, G. W. Peterson, C. T. Buru, T. Islamoglu, O. K. Farha, CrystEngComm 2019, 21, 2409.
- 27S. Ding, T. Zhang, P. Li, X. Wang, J. Membr. Sci. 2021, 636, 119550.
- 28X. Zhao, X. Zhang, X. Gao, B. Liu, J. Solid State Chem. 2024, 329, 124452.
- 29J.-J. Shao, K. Raidongia, A. R. Koltonow, J. Huang, Nat. Commun. 2015, 6, 7602.
- 30C.-W. Chang, C.-W. Chu, Y.-S. Su, L.-H. Yeh, J. Mater. Chem. A. 2022, 10, 2867.
- 31a) Q. Zhu, Y. Li, Q. Qian, P. Zuo, M. D. Guiver, Z. Yang, T. Xu, Energy Environ. Sci. 2022, 15, 4148; b) Z. Zhang, P. Bhauriyal, H. Sahabudeen, Z. Wang, X. Liu, M. Hambsch, S. C. B. Mannsfeld, R. Dong, T. Heine, X. Feng, Nat. Commun. 2022, 13, 3935.
- 32C.-W. Chu, A. R. Fauziah, L.-H. Yeh, Angew. Chem., Int. Ed. 2023, 62, e202303582.
- 33Z. Zhang, W. Shen, L. Lin, M. Wang, N. Li, Z. Zheng, F. Liu, L. Cao, Adv. Sci. 2020, 7, 2000286.
- 34C. Chen, G. Yang, D. Liu, X. Wang, N. A. Kotov, W. Lei, Adv. Funct. Mater. 2022, 32, 2102080.
- 35Z. Zhang, L. Wen, L. Jiang, Nat. Rev. Mater. 2021, 6, 622.
- 36J. Lu, H. Zhang, J. Hou, X. Li, X. Hu, Y. Hu, C. D. Easton, Q. Li, C. Sun, A. W. Thornton, M. R. Hill, X. Zhang, G. Jiang, J. Z. Liu, A. J. Hill, B. D. Freeman, L. Jiang, H. Wang, Nat. Mater. 2020, 19, 767.
- 37Y. Xiong, M. Li, G. Qing, Interdiscip. Mater. 2024, 3, 865.