Thiol Groups Reutilization on Chemical Bath Deposited Tin Oxide Surface Achieving Interface Anchoring and Defects Passivation for Enhancing the Performance and Stability of Perovskite Solar Cells
Bin Ma
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorDisheng Yao
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorBitao Chen
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorJilin Wang
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorXueqi Zhang
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorNan Tian
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorJiale Su
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorMingguang Chen
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorYong Peng
State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorCorresponding Author
Guoyuan Zheng
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fei Long
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorBin Ma
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorDisheng Yao
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorBitao Chen
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorJilin Wang
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorXueqi Zhang
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorNan Tian
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorJiale Su
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorMingguang Chen
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Search for more papers by this authorYong Peng
State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorCorresponding Author
Guoyuan Zheng
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fei Long
Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Due to its simple process and adaptability to large-area deposition, chemical bath deposition (CBD) is one of the preparation methods for the SnO2 layer in highly efficient “n-i-p” structured perovskite solar cells (PSCs). However, the residual thioglycolic acid (TGA) on the CBD-SnO2 surface affects the stability of PSCs and the carrier transport at the CBD-SnO2/perovskite interface, hindering the further development of this method. This work demonstrates a method for the reutilization of surface groups to construct molecular bridges. This strategy utilizes the substitution reaction between the residual thiol group on the CBD-SnO2 surface and the iodine group of iodoacetamide (IAM) to form the IAM structure. The IAM structure not only assists the perovskite grain crystallization but also increases the electronic cloud density of the CBD-SnO2 surface. Consequently, the charge mobility of the CBD-SnO2 is enhanced and the energy band alignment at the CBD-SnO2/perovskite interface is optimized. A champion device with the IAM structure achieved a power conversion efficiency (PCE) of 22.41% while it maintained 80% of its original PCE after placing at 65 °C in nitrogen filled atmosphere for over 300 h and in an environment at 25 °C and 50 ± 5% relative humidity for over 1000 h, respectively.
Conflict of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202408516-sup-0001-SuppMat.docx3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y. K. Kim, C. S. Moon, N. J. Jeon, J. P. Correa-Baena, V. Bulović, S. S. Shin, M. G. Bawendi, J. Seo, Nature. 2021, 590, 587.
- 2M. J. Grotevent, Y. Lu, T. Šverko, M. C. Shih, S. Tan, H. Zhu, T. Dang, J. K. Mwaura, R. Swartwout, F. Beiglböck, L. Kothe, V. Bulović, M. G. Bawendi, Adv. Energy Mater. 2024, 14, 2400456.
- 3G. Bai, Z. Wu, J. Li, T. Bu, W. Li, W. Li, F. Huang, Q. Zhang, Y. B. Cheng, J. Zhong, Sol. Energy. 2019, 183, 306.
- 4X. Zhang, Y. Zhou, M. Chen, D. Wang, L. Chao, Y. Lv, H. Zhang, Y. Xia, M. Li, Z. Hu, Y. Chen, Small. 2023, 19, 2303254.
- 5Y. Wang, M. Feng, H. Chen, M. Ren, H. Wang, Y. Miao, Y. Chen, Y. Zhao, Adv. Mater. 2024, 36, 2305849.
- 6S. Y. Park, K. Zhu, Adv. Mater. 2022, 34, 2110438.
- 7Z. Y. Suo, G. B. Xiao, Z. Su, R. Dong, X. Mu, X. Gao, Y. Wu, J. Cao, Energy Environ. Sci. 2024, 17, 5115.
- 8M. J. Paik, Y. Y. Kim, J. Kim, J. Park, S. I. Seok, Joule. 2024, 8, 2073.
- 9J. Zhang, C. Bai, Y. Dong, W. Shen, Q. Zhang, F. Huang, Y. B. Cheng, J. Zhong, Chem. Eng. J. 2021, 425, 131444.
- 10X. Liu, T. Bu, J. Li, J. He, T. Li, J. Zhang, W. Li, Z. Ku, Y. Peng, F. Huang, Y. B. Cheng, J. Zhong, Nano Energy. 2018, 44, 34.
- 11A. Uddin, H. Yi, Sol. RRL. 2022, 6, 2100983.
- 12Q. Zhao, D. Liu, Z. Li, B. Zhang, X. Sun, Z. Shao, C. Chen, X. Wang, L. Hao, X. Wang, C. Gao, Y. Li, P. Chen, X. Zhang, S. Pang, G. Cui, L. Wang, Chem. Eng. J. 2022, 443, 136308.
- 13Y. Lu, M. C. Shih, S. Tan, M. J. Grotevent, L. Wang, H. Zhu, R. Zhang, J. H. Lee, J.-W. Lee, V. Bulović, M. G. Bawendi, Adv. Mater. 2023, 35, 2304168.
- 14G. Wu, H. Li, J. Cui, Y. Zhang, S. Olthof, S. Chen, Z. Liu, D. Wang, S. Liu, Adv. Sci. 2020, 7, 1903250.
- 15S. Kim, F. Zhang, J. Tong, X. Chen, E. Enkhbayar, K. Zhu, J. Kim, Sol. Energy. 2022, 233, 353.
- 16Z. Wu, J. Su, N. Chai, S. Cheng, X. Wang, Z. Zhang, X. Liu, H. Zhong, J. Yang, Z. Wang, J. Liu, X. Li, H. Lin, Adv. Sci. 2023, 10, 2300010.
- 17Z. Yang, A. B. Attygalle, J. Mass Spectrom. 2007, 42, 233.
- 18A. Aitken, M. Learmonth, in The Protein Protocols Handbook, (Ed., J. M. Walker), Humana Press, Totowa, NJ 2002; pp. 455–456.
10.1385/1-59259-169-8:455 Google Scholar
- 19J. Chen, X. Zhang, X. Liu, B. Li, M. Han, S. Han, Y. Han, J. Liu, W. Dai, R. Ghadari, S. Dai, ACS Appl. Mater. Interfaces. 2024, 16, 22079.
- 20X. Zhang, S. Zhang, X. Liao, B. Ding, G. Rahim, K. Zhao, J. Chen, M. Han, Y. Zhou, P. Shi, K. Zhang, S. Kinge, H. Zhang, R. Wang, K. G. Brooks, S. Dai, X. Liu, Z. Fei, P. J. Dyson, M. K. Nazeeruddin, Y. Ding, Adv. Funct. Mater. 2024, 34, 2314086.
- 21H. Ma, H. Zhang, M. Xue, Acta Chim. Sin. 2021, 79, 388.
- 22H. Guo, W. Xiang, Y. Fang, J. Li, Y. Lin, Angew. Chem., Int. Ed. 2023, 62, 202304568.
- 23L. Chen, L. Chen, Z. Chen, J. Wu, T. Lou, Y. Li, Z. Zhou, H. Li, G. Li, Q. Meng, Small. 2024, 20, 2308964.
- 24Y. Yang, H. Huang, L. Yan, P. Cui, Z. Lan, C. Sun, S. Du, X. Wang, C. Yao, S. Qu, Q. Zhang, M. Wang, X. Zhao, M. Li, Adv. Energy Mater. 2024, 14, 2400416.
- 25X. Wang, H. Huang, M. Wang, Z. Lan, P. Cui, S. Du, Y. Yang, L. Yan, Q. Zhang, S. Qu, M. Li, Adv. Mater. 2024, 36, 2310710.
- 26Y. Yang, T. Wei, X. Shai, Q. Song, C. Zeng, D. He, H. Zhang, J. Chen, Adv. Opt. Mater. 2023, 11, 2300684.
- 27S. Li, F. Qin, Q. Peng, S. Liu, Z. Zhang, D. Zhang, C. Liu, D. Li, J. Liu, J. Qi, Y. Hu, Y. Rong, A. Mei, H. Han, Nano Lett. 2020, 20, 8178.
- 28X. Chen, W. Xu, Z. Shi, G. Pan, J. Zhu, J. Hu, X. Li, C. Shan, H. Song, Nano Energy. 2021, 80, 105564.
- 29X. Yu, W. Ge, L. Fan, R. Peng, B. Fan, B. Jin, Carbon. 2023, 211, 118067.
- 30Y. Zhang, R. Yu, M. Li, Z. He, Y. Dong, Z. Xu, R. Wang, Z. Ma, Z. Tan, Adv. Mater. 2024, 36, 2310203.
- 31Z. Qin, Y. Chen, X. Wang, N. Wei, X. Liu, H. Chen, Y. Miao, Y. Zhao, Adv. Mater. 2022, 34, 2203143.
- 32Z. He, Y. Hu, G. Sun, W. Song, X. Wang, S. Zhang, J. Wang, M. Wang, T. Sun, Y. Tang, Sol. RRL. 2022, 6, 2200567.
- 33F. Wang, J. Ma, D. Duan, X. Liang, K. Zhou, Y. Sun, T. Wang, G. Yang, G. Pei, H. Lin, Y. Shi, Q. Zhu, G. Li, H. Hu, Small. 2024, 20, 2307679.
- 34Y. Ai, Y. Zhang, J. Song, T. Kong, Y. Li, H. Xie, D. Bi, J. Phys. Chem. Lett. 2021, 12, 10567.
- 35Y. Huang, L. Li, Z. Liu, H. Jiao, Y. He, X. Wang, R. Zhu, D. Wang, J. Sun, Q. Chen, H. Zhou, J. Mater. Chem. A. 2017, 5, 8537.
- 36J. Chen, S. G. Kim, X. Ren, H. S. Jung, N. G. Park, J. Mater. Chem. A. 2019, 7, 4977.
- 37D. Liu, C. Chen, X. Wang, X. Sun, B. Zhang, Q. Zhao, Z. Li, Z. Shao, X. Wang, G. Cui, S. Pang, Adv. Mater. 2024, 36, 2310962.
- 38Z. Miao, Q. Cao, S. Peng, H. Zhu, F. Yuan, Y. Liang, T. Zhang, R. Zhao, P. Li, Y. Zhang, Y. Song, Adv. Funct. Mater. 2024, 34, 2311135.
- 39H. Bi, Y. Guo, M. Guo, C. Ding, S. Hayase, T. Mou, Q. Shen, G. Han, W. Hou, Chem. Eng. J. 2022, 439, 135671.
- 40G. Fu, D. K. Lee, C. Ma, N. G. Park, ACS Energy Lett. 2023, 8, 4563.