Facilitating Oriented Electron Transfer from Cu to Mo2C MXene for Weakened Mo─H Bond Toward Enhanced Photocatalytic H2 Generation
Ruiyun Liu
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 China
Search for more papers by this authorCorresponding Author
Ping Wang
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXuefei Wang
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 China
Search for more papers by this authorFeng Chen
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 China
Search for more papers by this authorCorresponding Author
Huogen Yu
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorRuiyun Liu
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 China
Search for more papers by this authorCorresponding Author
Ping Wang
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXuefei Wang
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 China
Search for more papers by this authorFeng Chen
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070 China
Search for more papers by this authorCorresponding Author
Huogen Yu
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Mo2C MXene (Mo2CTx) is recognized as an excellent cocatalyst due to unique physicochemical properties and platinum-like d-band of Mo active sites. However, Mo sites of Mo2CTx with high-density empty d-orbitals exhibit strong Mo─Hads bonds during photocatalytic hydrogen evolution, leading to easy adsorption of hydrogen ions from solution and unfavorable desorption of H2 from Mo sites. To weaken the Mo─Hads bond, a strategy of oriented electron transfer from Cu to Mo2CTx to increase the antibonding orbital occupancy of Mo─Hads hybrid orbitals is implemented by introducing Cu into Mo2CTx interlayers to form Cu-Mo2CTx. The Cu-Mo2CTx is synthesized from Mo2Ga2C and CuCl2 via a one-step molten salt method and combined with TiO2 to form Cu-Mo2CTx/TiO2 photocatalyst through an ultrasound-assisted approach. Hydrogen production tests reveal that an exceptional performance of Cu-Mo2CTx/TiO2 (6446 µmol h−1 g−1, AQE = 18.3%) is 8.4 fold higher than that of Mo2CF2/TiO2 (Mo2CF2 by the conventional etchant NH4F+HCl). Density functional theory (DFT) calculations and characterization results corroborate that the oriented electron transfer from Cu to Mo2CTx increases the Mo─Hads antibonding occupancy in Cu-Mo2CTx, thereby weakening Mo─Hads bonds and accelerating the hydrogen evolution rate of TiO2. This research offers valuable insights into optimizing H-adsorption capabilities at active sites on MXene materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202408330-sup-0001-SuppMat.docx4.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Adv. Mater. 2014, 26, 982; b) D. Wang, C. Zhou, A. S. Filatov, W. Cho, F. Lagunas, M. Wang, S. Vaikuntanathan, C. Liu, R. F. Klie, D. V. Talapin, Science 2023, 379, 1242.
- 2a) Y. Cao, P. Wang, X. Wang, F. Chen, H. Yu, J. Mater. Chem. C 2024, 12, 10152;
b) K. Li, S. Zhang, Y. Li, J. Fan, K. Lv, Chin. J. Catal. 2021, 42, 3;
c) H. Liu, Y. Ma, B. Cao, Q. Zhu, B. Xu, Acta Phys.-Chim. Sin. 2023, 39, 2210027;
10.3866/PKU.WHXB202210027 Google Scholard) X. Cao, C. Hou, Y. Li, K. Li, Q. Zhang, H. Wang, Acta Phys.-Chim. Sin. 2022, 38, 2204058.
- 3a) H. Ding, Y. Li, M. Li, K. Chen, K. Liang, G. Chen, J. Lu, J. Palisaitis, P. O. Å. Persson, P. Eklund, L. Hultman, S. Du, Z. Chai, Y. Gogotsi, Q. Huang, Science 2023, 379, 1130; b) I. Persson, A. El Ghazaly, Q. Tao, J. Halim, S. Kota, V. Darakchieva, J. Palisaitis, M. W. Barsoum, J. Rosen, P. O. Å. Persson, Small 2018, 14, 1703676.
- 4H. W. Wang, M. Naguib, K. Page, D. J. Wesolowski, Y. Gogotsi, Chem. Mater. 2016, 28, 349.
- 5a) Y. Gogotsi, B. Anasori, ACS Nano 2019, 13, 8491; b) A. VahidMohammadi, J. Rosen, Y. Gogotsi, Science 2021, 372, eabf1581.
- 6X. Ke, M. Pan, R. Liu, P. Wang, X. Wang, H. Yu, Sol. RRL 2023, 7, 2300669.
- 7W. Chen, M. Niu, Z. Zhang, L. Chen, X. Li, J. Zhang, R. Sun, H. Cao, X. Wang, Small 2024, 20, 2311026.
- 8Y. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. 2015, 54, 52.
- 9S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem. 1972, 39, 163.
- 10P. Deng, D. Gao, P. Wang, X. Wang, F. Chen, H. Yu, J. Mater. Chem. A 2023, 11, 21874.
- 11a) W. Jiang, Z. Gao, M. Shen, J. Zhou, R. Tang, L. Zhang, J. Q. Wang, Int. J. Hydrogen Energy 2024, 57, 1; b) B. Ding, W.-J. Ong, J. Jiang, X. Chen, N. Li, Appl. Surf. Sci. 2020, 500, 143987.
- 12D. A. Kuznetsov, Z. Chen, P. V. Kumar, A. Tsoukalou, A. Kierzkowska, P. M. Abdala, O. V. Safonova, A. Fedorov, C. R. Müller, J. Am. Chem. Soc. 2019, 141, 17809.
- 13a) H. Zou, M. Pan, P. Wang, F. Chen, X. Wang, H. Yu, Catal. Sci. Technol. 2024, 14, 5731;
b) X. Ke, P. Wang, X. Wang, F. Chen, H. Yu, Chem. Eng. J. 2024, 495, 153477;
c) X. Ke, P. Wang, X. Wang, F. Chen, H. Yu, Small 2024, https://doi.org/10.1002/smll.202405378;
10.1002/smll.202405378 Google Scholard) J. Ren, H. Zong, Y. Sun, S. Gong, Y. Feng, Z. Wang, L. Hu, K. Yu, Z. Zhu, CrystEngComm 2020, 22, 1395.
- 14D. Gao, H. Long, X. Wang, J. Yu, H. Yu, Adv. Funct. Mater. 2023, 33, 2209994.
- 15a) X. Zhang, T. Liu, T. Guo, Z. Mu, X. Hu, K. He, X. Chen, V. P. Dravid, Z. Wu, D. Wang, ACS Appl. Mater. Interfaces 2021, 13, 40705; b) M. Pan, L. Gao, P. Wang, X. Wang, H. Yu, J. Alloys Compd. 2023, 939, 168721.
- 16M. Pan, P. Wang, X. Wang, F. Chen, H. Yu, ACS Sustainable Chem. Eng. 2023, 11, 13222.
- 17a) C. A. Coulson, Nature 1961, 189, 3;
10.1038/189003a0 Google Scholarb) M. Wang, P. Wang, X. Wang, F. Chen, H. Yu, J. Mater. Sci. Technol. 2024, 174, 168; c) M. Wang, P. Wang, H. Long, X. Wang, F. Chen, H. Yu, Dalton Trans. 2022, 51, 14526.
- 18a) J. Wu, J. Su, T. Wu, L. Huang, Q. Li, Y. Luo, H. Jin, J. Zhou, T. Zhai, D. Wang, Y. Gogotsi, Y. Li, Adv. Mater. 2023, 35, 2209954.
- 19a) V. Okatenko, A. Loiudice, M. A. Newton, D. C. Stoian, A. Blokhina, A. N. Chen, K. Rossi, R. Buonsanti, J. Am. Chem. Soc. 2023, 145, 5370; b) X. Zhang, X. Zhu, L. Lin, S. Yao, M. Zhang, X. Liu, X. Wang, Y. W. Li, C. Shi, D. Ma, ACS Catal. 2017, 7, 912.
- 20Y. Bai, C. Liu, T. Chen, W. Li, S. Zheng, Y. Pi, Y. Luo, H. Pang, Angew. Chem., Int. Ed. 2021, 60, 25318.
- 21a) W. Feng, R. Wang, Y. Zhou, L. Ding, X. Gao, B. Zhou, P. Hu, Y. Chen, Adv. Funct. Mater. 2019, 29, 1901942; b) C. Wang, H. Shou, S. Chen, S. Wei, Y. Lin, P. Zhang, Z. Liu, K. Zhu, X. Guo, X. Wu, P. M. Ajayan, L. Song, Adv. Mater. 2021, 33, 2101015.
- 22N. Lu, X. Jing, Y. Xu, W. Lu, K. Liu, Z. Zhang, Acta Phys.-Chim. Sin. 2023, 39, 2207045.
- 23Z. Chen, P. Wang, X. Wang, H. Yu, Surf. Interfaces 2024, 51, 104684.
- 24a) C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X. L. Ma, H. M. Cheng, W. Ren, Nat. Mater. 2015, 14, 1135; b) Z. W. Seh, K. D. Fredrickson, B. Anasori, J. Kibsgaard, A. L. Strickler, M. R. Lukatskaya, Y. Gogotsi, T. F. Jaramillo, A. Vojvodic, ACS Energy Lett. 2016, 1, 589.
- 25K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272.
- 26J. Halim, S. S. Kota, M. R. Lukatskaya, M. Naguib, M. Zhao, E. J. Moon, J. Pitock, J. Nanda, S. J. May, Y. Gogotsi, M. W. Barsoum, Adv. Funct. Mater. 2016, 26, 3118.
- 27Y. Hu, X. Yu, Q. Liu, L. Wang, H. Tang, Carbon 2022, 188, 70.
- 28W. Gou, Y. Wang, M. Zhang, X. Tan, Y. Ma, Y. Qu, Chin. J. Catal. 2024, 60, 68.
- 29J. Zhang, Y. Zhao, X. Guo, C. Chen, C. L. Dong, R.-S. Liu, C. P. Han, Y. Li, Y. Gogotsi, G. Wang, Nat. Catal. 2018, 1, 985.
- 30a) Z. Yu, C. Guan, X. Yue, Q. Xiang, Chin. J. Catal. 2023, 50, 361; b) Y. Zhu, Y. Zhuang, L. Wang, H. Tang, X. Meng, X. She, Chin. J. Catal. 2022, 43, 2558.
- 31Y. He, P. Hu, J. Zhang, G. Liang, J. Yu, F. Xu, ACS Catal. 2024, 14, 1951.
- 32a) H. Long, D. Gao, P. Wang, X. Wang, F. Chen, H. Yu, Appl. Catal., B 2024, 340, 123270; b) H. Ding, R. Shen, K. Huang, C. Huang, G. Liang, P. Zhang, X. Li, Adv. Funct. Mater. 2024, 34, 2400065.
- 33a) L. Cheng, B. Li, H. Yin, J. Fan, Q. Xiang, J. Mater. Sci. Technol. 2022, 118, 54; b) K. Li, W. Zhou, X. Li, Q. Li, S. A. C. Carabineiro, S. Zhang, J. Fan, K. Lv, J. Hazard. Mater. 2023, 442, 130040; c) H. Xie, K. Wang, S. Li, Z. Jin, Surf. Interfaces 2023, 42, 103353.
- 34R. Shen, C. Qin, L. Hao, X. Li, P. Zhang, X. Li, Adv. Mater 2023, 35, 2305397.
- 35Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu, B. Duployer, P. O. Å. Persson, P. Eklund, L. Hultman, M. Li, K. Chen, X. H. Zha, S. Du, P. Rozier, Z. Chai, E. Raymundo-Piñero, P. L. Taberna, P. Simon, Q. Huang, Nat. Mater. 2020, 19, 894.
- 36Y. Guo, S. Jin, L. Wang, P. He, Q. Hu, L. Z. Fan, A. Zhou, Ceram. Int. 2020, 46, 19550.