Decoupled Water Reduction and Hydrazine Oxidation by Fast Proton Transport MoO3 Redox Mediator for Hydrogen Production
AJing Song
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620 China
Search for more papers by this authorYuan Wei
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620 China
Search for more papers by this authorXin Jin
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Yuanyuan Ma
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620 China
Jiangsu Hengli Chemical Fiber Co., Ltd, Suzhou, 215200 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yonggang Wang
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianping Yang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAJing Song
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620 China
Search for more papers by this authorYuan Wei
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620 China
Search for more papers by this authorXin Jin
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Yuanyuan Ma
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620 China
Jiangsu Hengli Chemical Fiber Co., Ltd, Suzhou, 215200 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yonggang Wang
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianping Yang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Water electrolysis powered by renewable energy is a green and sustainable method for hydrogen production. Decoupled water electrolysis with the aid of solid-state redox mediator could separate the hydrogen and oxygen production in time and space without the use of the membrane, showing high flexibility. Herein, a MoO3 electrode with fast proton transport property is employed as a solid-state redox mediator to construct a membrane-free decoupled acidic electrolytic system. The MoO3 electrode exhibits high specific capacity (204.3 mAh g−1 at 5 A g−1) and excellent rate performance (92.8 mAh g−1 at 150 A g−1) in the acidic environment. Due to the dense oxide-ion arrays, MoO3 still exhibits excellent performance under high mass-loading. In addition, a hybrid decoupled electrolysis system is also constructed by combining water reduction and hydrazine oxidation, which can not only generate high-purity H2 but also remove hydrazine hazards in acidic wastewater with lower energy consumption.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202407783-sup-0001-SuppMat.docx5.6 MB | Supporting Information |
smll202407783-sup-0002-VideoS1.mp4946 KB | Supplementay Video 1 |
smll202407783-sup-0003-VideoS2.mp4803.4 KB | Supplementay Video 2 |
smll202407783-sup-0004-VideoS3.mp414.7 MB | Supplementay Video 3 |
smll202407783-sup-0005-VideoS4.mp411.4 MB | Supplementay Video 4 |
smll202407783-sup-0006-VideoS5.mp412 MB | Supplementay Video 5 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. A. Turner, Science 2004, 305, 972.
- 2Y. Wu, M. Chen, Y. Han, H. Luo, X. Su, M.-T. Zhang, X. Lin, J. Sun, L. Wang, L. Deng, W. Zhang, R. Cao, Angew. Chem., Int. Ed. 2015, 54, 4870.
- 3R. Hanna, D. G. Victor, Nat. Energy 2021, 6, 936.
10.1038/s41560-021-00869-8 Google Scholar
- 4M. D. Allendorf, V. Stavila, J. L. Snider, M. Witman, M. E. Bowden, K. Brooks, B. L. Tran, T. Autrey, Nat. Chem. 2022, 14, 1214.
- 5Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 6Y. Wang, X. Li, M. Zhang, J. Zhang, Z. Chen, X. Zheng, Z. Tian, N. Zhao, X. Han, K. Zaghib, Adv. Mater. 2022, 34, 2107053.
- 7Y. Luo, Z. Zhang, M. Chhowalla, B. Liu, Adv. Mater. 2022, 34, 2108133.
- 8D. H. Marin, J. T. Perryman, M. A. Hubert, G. A. Lindquist, L. Chen, A. M. Aleman, G. A. Kamat, V. A. Niemann, M. B. Stevens, Y. N. Regmi, S. W. Boettcher, A. C. Nielander, T. F. Jaramillo, Joule 2023, 7, 765.
- 9M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy 2013, 38, 4901.
- 10Y. Wang, Y. Pang, H. Xu, A. Martinez, K. S. Chen, Energy Environ. Sci. 2022, 15, 2288.
- 11L. Chen, X. Dong, Y. Wang, Y. Xia, Nat. Commun. 2016, 7, 11741.
- 12Y. Ma, K. Wu, T. Long, J. Yang, Adv. Energy Mater. 2023, 13, 2203455.
- 13M. Hou, L. Chen, Z. Guo, X. Dong, Y. Wang, Y. Xia, Nat. Commun. 2018, 9, 438.
- 14F. Lv, Z. Qin, J. Wu, L. Pan, L. Liu, Y. Chen, Y. Zhao, ChemSusChem 2023, 16, 202201689.
- 15Y. He, C. Sun, N. S. Alharbi, S. Yang, C. Chen, J. Colloid Interface Sci. 2023, 650, 151.
- 16K. Wu, H. Li, S. Liang, Y. Ma, J. Yang, Angew. Chem., Int. Ed. 2023, 135, 202303563.
10.1002/ange.202303563 Google Scholar
- 17J. Liu, D. G. D. Galpaya, L. Yan, M. Sun, Z. Lin, C. Yan, C. Liang, S. Zhang, Energy Environ. Sci. 2017, 10, 750.
- 18Y. Liu, X. He, D. Hanlon, A. Harvey, J. N. Coleman, Y. Li, ACS Nano 2016, 10, 8821.
- 19J. Wang, L. Ji, X. Teng, Y. Liu, L. Guo, Z. Chen, J. Mater. Chem. A 2019, 7, 13149.
- 20Y. Ma, X. Dong, Y. Wang, Y. Xia, Angew. Chem., Int. Ed. 2018, 57, 2904.
- 21Y. Ma, Z. Guo, X. Dong, Y. Wang, Y. Xia, Angew. Chem., Int. Ed. 2019, 58, 4622.
- 22S. Liang, M. Jiang, H. Luo, Y. Ma, J. Yang, Adv. Energy Mater. 2021, 11, 2102057.
- 23S. Liang, Y. Ma, H. Luo, K. Wu, J. Chen, J. Yang, Chem. Eur. J. 2023, 29, 202302160.
- 24F. Lv, J. Wu, X. Liu, Z. Zheng, L. Pan, X. Zheng, L. Guo, Y. Chen, Nat. Commun. 2024, 15, 1339.
- 25W. Yan, G. Li, S. Cui, G.-S. Park, R. Oh, W. Chen, X. Cheng, J.-M. Zhang, W. Li, L.-F. Ji, O. Akdim, X. Huang, H. Lin, J. Yang, Y.-X. Jiang, S.-G. Sun, J. Am. Chem. Soc. 2023, 145, 17220.
- 26Z. Zhang, Y. Dong, C. Carlos, X. Wang, ACS Nano 2023, 17, 17180.
- 27X. Fan, W. Chen, L. Xie, X. Liu, Y. Ding, L. Zhang, M. Tang, Y. Liao, Q. Yang, X.-Z. Fu, S. Luo, J.-L. Luo, Adv. Mater. 2024, 36, 231379.
- 28K. Xiang, D. Wu, X. Deng, M. Li, S. Chen, P. Hao, X. Guo, J.-L. Luo, X.-Z. Fu, Adv. Funct. Mater. 2020, 30, 1909610.
- 29M. Guo, P. Ma, J. Wang, H. Xu, K. Zheng, D. Cheng, Y. Liu, G. Guo, H. Dai, E. Duan, J. Deng, Angew. Chem., Int. Ed. 2022, 61, 202203827.
- 30M. Guo, P. Ma, L. Wei, J. Wang, Z. Wang, K. Zheng, D. Cheng, Y. Liu, H. Dai, G. Guo, E. Duan, J. Deng, J. Am. Chem. Soc. 2023, 145, 11110.
- 31T. Wang, L. Miao, S. Zheng, H. Qin, X. Cao, L. Yang, L. Jiao, ACS Catal. 2023, 13, 4091.
- 32S. Xu, D. Jiao, X. Ruan, Z. Jin, Y. Qiu, Z. Feng, L. Zheng, J. Fan, W. Zheng, X. Cui, Adv. Funct. Mater. 2024, 34, 2401265.
- 33Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Nat. Commun. 2020, 11, 1853.
- 34X.-H. Wang, R. Yuan, S.-B. Yin, Q.-L. Hong, Q.-G. Zhai, Y.-C. Jiang, Y. Chen, S.-N. Li, Adv. Funct. Mater. 2024, 34, 2310288.
- 35T. Wang, X. Cao, L. Jiao, Angew. Chem., Int. Ed. 2022, 61, 202213328.
- 36Z. Ma, X.-M. Shi, S.-i. Nishimura, S. Ko, M. Okubo, A. Yamada, Adv. Mater. 2022, 34, 2203335.
- 37H. Guo, D. Goonetilleke, N. Sharma, W. Ren, Z. Su, A. Rawal, C. Zhao, Cell Rep. Phys. Sci. 2020, 1, 100225.
- 38Z. Su, W. Ren, H. Guo, X. Peng, X. Chen, C. Zhao, Adv. Funct. Mater. 2020, 30, 2005477.
- 39X. Wang, Y. Xie, K. Tang, C. Wang, C. Yan, Angew. Chem., Int. Ed. 2018, 57, 11569.
- 40M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, Adv. Mater. 2018, 30, 1703725.
- 41P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan, J. Li, W. Luo, W. Yang, W. Zhang, L. Zhou, Nano Lett. 2018, 18, 1758.
- 42C. Luo, G. L. Xu, X. Ji, S. Hou, L. Chen, F. Wang, J. Jiang, Z. Chen, Y. Ren, K. Amine, Angew. Chem., Int. Ed. 2018, 57, 2879.
- 43V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518.
- 44Y. Elbaz, D. Furman, M. C. Toroker, Phys. Chem. Chem. Phys. 2018, 20, 25169.
- 45Q. Liu, Y. Yan, X. Chu, Y. Zhang, L. Xue, W. Zhang, J. Mater. Chem. A 2017, 5, 21328.
- 46P. Wongkrua, T. Thongtem, S. Thongtem, J. Nanomater. 2013, 8, 702679.
10.1155/2013/702679 Google Scholar
- 47D. Chen, M. Liu, L. Yin, T. Li, Z. Yang, X. Li, B. Fan, H. Wang, R. Zhang, Z. Li, J. Mater. Chem. 2011, 21, 9332.
- 48B. Wang, E. H. Ang, Y. Yang, Y. Zhang, H. Geng, M. Ye, C. C. Li, Adv. Funct. Mater. 2020, 30, 2001708.
- 49L. Yan, J. Huang, Z. Guo, X. Dong, Z. Wang, Y. Wang, ACS Energy Lett. 2020, 5, 685.
- 50H. Wang, A. Song, H. Chen, W. Zhang, Z. Xue, Inorg. Chem. 2022, 61, 12489.