Room-Temperature CsPbI3-Quantum-Dot Reinforced Solid-State Li-Polymer Battery
Wentao Wang
Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Search for more papers by this authorAili Jia
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Search for more papers by this authorYiping Wang
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Search for more papers by this authorYuanxiao Qu
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Search for more papers by this authorJunfeng Huang
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Search for more papers by this authorWen Zhang
School of Mathematics and Statistics, Hainan University, Haikou, 570228 China
Search for more papers by this authorCorresponding Author
Haitao Zhang
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031 China
Institute of Hydrogen & Energy Storage Technologies, Southwest Jiaotong University, Chengdu, 610031 China
E-mail: [email protected]
Search for more papers by this authorWentao Wang
Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Search for more papers by this authorAili Jia
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Search for more papers by this authorYiping Wang
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Search for more papers by this authorYuanxiao Qu
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Search for more papers by this authorJunfeng Huang
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Search for more papers by this authorWen Zhang
School of Mathematics and Statistics, Hainan University, Haikou, 570228 China
Search for more papers by this authorCorresponding Author
Haitao Zhang
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610031 China
Institute of Hydrogen & Energy Storage Technologies, Southwest Jiaotong University, Chengdu, 610031 China
E-mail: [email protected]
Search for more papers by this authorAbstract
A novel polymer electrolyte based on CsPbI3 quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI3 QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.56 mS cm−1, and its Li-ion transference number () from 0.20 to 0.63. It is revealed that the synergistic enhancement of Li-ion transport and interface stability is realized by CsPbI3 QDs through Lewis acid–base interaction, ordered polarization of PAN, and interface chemical regulation. These two effects guarantee the robust solid-electrolyte interface (SEI) in PIL-based solid-state batteries. Consequently, PIL electrolyte enables solid-state Li-metal batteries to deliver extraordinary RT cycling performance as verified by excellent cycling stability (>2000 h at 0.1 mA cm−2) of Li|PIL|Li symmetric batteries. Moreover, Li|PIL|LFP (LFP is LiFePO4) and Li|PIL|NCM811 (NCM811 is Li(Ni0.8Co0.1Mn0.1)O2) batteries maintain capacity retention of 81.2% and 77.9%, respectively, after 600 cycles at 0.5 C, as well as good rate-capability and very high Coulombic efficiency at RT.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202407713-sup-0001-SuppMat.docx27 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) M. Li, J. Lu, Z. W. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561; b) H. Zhang, Y. Wang, J. Huang, W. Li, X. Zeng, A. Jia, H. Peng, X. Zhang, W. Yang, Energy Environ. Mater. 2024, 7, 12514; c) S. T. Han, P. Wen, H. J. Wang, Y. Zhou, Y. Gu, L. Zhang, Y. Shao-Horn, X. R. Lin, M. Chen, Nat. Mater. 2023, 22, 1515; d) M. Jacob, K. Wissel, O. Clemens, Mater. Futures 2024, 3, 012101.
- 2T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, C. Masquelier, Nat. Mater. 2019, 18, 1278.
- 3F. D. Han, Y. Z. Zhu, X. F. He, Y. F. Mo, C. S. Wang, Adv. Energy Mater. 2016, 6, 1501590.
- 4K. Takada, Acta Mater. 2013, 61, 759.
- 5a) W. H. Ren, C. F. Ding, X. W. Fu, Y. Huang, Energy Storage Mater. 2021, 34, 515; b) F. M. Ye, Z. X. Wang, M. C. Li, J. Zhang, D. Wang, M. A. Liu, A. P. Liu, H. Z. Lin, H. T. Kim, J. Wang, Nano Lett. 2024, 24, 6850.
- 6V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243.
- 7a) Z. Y. Lin, X. W. Guo, Y. B. Yang, M. X. Tang, Q. Wei, H. J. Yu, J. Energy Chem. 2021, 52, 67; b) H. Kitaura, H. S. Zhou, Sci. Rep. 2015, 5, 13271; c) P. S. Lu, Y. Xia, Y. L. Huang, Z. D. Li, Y. J. Wu, X. Wang, G. C. Sun, S. C. Shi, Z. J. Sha, L. Q. Chen, H. Li, F. Wu, Adv. Funct. Mater. 2023, 33, 2211211; d) M. Zhang, K. F. Zhou, D. H. Ma, H. L. Wang, X. Y. Tang, M. Bai, F. Liu, Z. Q. Wang, Y. Ma, Mater. Today 2022, 56, 53; e) Y. Zheng, C. Z. Wang, R. R. Zhang, S. Q. Dai, H. Xie, J. Q. Cui, X. L. Fang, Energy Storage Mater. 2023, 57, 540; f) Y. Zhou, W. C. Pan, L. X. Ma, T. D. Chen, Y. X. Sun, Chinese Powder Sci. Technol. 2025, 31, 1; g) Y. F. Zhu, Z. J. Lao, M. T. Zhang, T. Z. Hou, X. Xiao, Z. H. Piao, G. X. Lu, Z. Y. Han, R. H. Gao, L. Nie, X. R. Wu, Y. Z. Song, C. Y. Ji, J. Wang, G. M. Zhou, Nat. Commun. 2024, 15, 3914.
- 8a) D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. X. Wang, Chem 2019, 5, 2326; b) Z. Xu, H. Zhang, T. Yang, X. Chu, Y. Xie, Q. Wang, Y. Xia, W. Yang, Cell Rep. Phys. Sci. 2021, 2, 100644; c) H. Zhang, A. Jia, Y. Wang, X. Fu, C. Liu, H. Peng, H. Tang, Z. Xu, J. Huang, W. Yang, ACS Sustainable Chem. Eng. 2023, 11, 14986; d) W. J. Lin, H. Y. Yuan, C. H. Tian, M. Y. Song, T. Huang, A. S. Yu, Energy Storage Mater. 2024, 70, 103472.
- 9B. Sarmad, L. Gao, W. M. Kang, Polymer 2023, 285, 126275.
- 10F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M. A. Hendrickson, Electrochim. Acta 2001, 46, 2457.
- 11a) C. Ma, K. Dai, H. S. Hou, X. B. Ji, L. B. Chen, D. C. Ivey, W. F. Wei, Adv. Sci. 2018, 5, 1700996; b) Y. Wang, W. Li, Z. Xu, Y. Xie, Y. Wang, H. Zhao, J. Huang, W. Yang, H. Zhang, ACS Appl. Energy Mater. 2021, 4, 11470; c) A. Nitzan, M. A. Ratner, J. Phys. Chem. 1994, 98, 1765.
- 12Z. B. Zhang, X. F. Liu, D. Wang, H. Z. Qin, X. Y. He, B. Gao, G. W. Li, W. J. Zheng, Z. C. Zhuang, G. M. Yang, X. Ou, Energy Storage Mater. 2024, 69, 103419.
- 13Z. Xu, T. Yang, X. Chu, H. Su, Z. Wang, N. Chen, B. Gu, H. Zhang, W. Deng, H. Zhang, W. Yang, ACS Appl. Mater. Interfaces 2020, 12, 10341.
- 14Y. Wang, X. M. Li, J. Z. Song, L. Xiao, H. B. Zeng, H. D. Sun, Adv. Mater. 2015, 27, 7101.
- 15a) B. Delley, J. Chem. Phys. 1990, 92, 508; b) E. R. McNellis, J. Meyer, K. Reuter, Phys. Rev. B 2009, 80, 205414.
- 16J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 77, 3865.
- 17H. Sun, J. Phys. Chem. B 1998, 102, 7338.
- 18D. Z. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, Solid State Ionics 2002, 148, 405.
- 19Z. X. Wang, B. Y. Huang, R. J. Xue, X. J. Huang, L. Q. Chen, Solid State Ionics 1999, 121, 141.
- 20Y. H. Liu, W. K. Xian, J. L. He, Y. Li, Int. J. Smart Nano Mater. 2023, 14, 474.
- 21H. Tadokoro, S. Murahashi, R. Yamadera, T. I. Kamei, J. Polymer Sci. 1963, 1, 405.
- 22Z. C. A. Shen, Y. F. Cheng, S. H. Sun, X. Ke, L. Y. Liu, Z. C. Shi, Carbon Energy 2021, 3, 482.
- 23a) Y. Gao, T. Rojas, K. Wang, S. Liu, D. W. Wang, T. H. Chen, H. Y. Wang, A. T. Ngo, D. H. Wang, Nat. Energy 2020, 5, 534; b) Y. Jin, P. M. L. Le, P. Y. Gao, Y. B. Xu, B. W. Xiao, M. H. Engelhard, X. Cao, T. D. Vo, J. T. Hu, L. R. Zhong, B. E. Matthews, R. Yi, C. M. Wang, X. L. Li, J. Liu, J. G. Zhang, Nat. Energy 2022, 7, 718.
- 24a) F. L. Qiu, X. Li, H. Deng, D. Wang, X. W. Mu, P. He, H. S. Zhou, Adv. Energy Mater. 2019, 9, 1803327; b) C. Liao, L. F. Han, X. W. Mu, Y. L. Zhu, N. Wu, J. Y. Lu, Y. G. Zhao, X. J. Li, Y. Hu, Y. C. Kan, L. Song, ACS Appl. Mater. Interfaces 2021, 13, 46783; c) W. Y. Li, H. B. Yao, K. Yan, G. Y. Zheng, Z. Liang, Y. M. Chiang, Y. Cui, Nat. Commun. 2015, 6, 743610; d) X. L. Fan, L. Chen, X. Ji, T. Deng, S. Y. Hou, J. Chen, J. Zheng, F. Wang, J. J. Jiang, K. Xu, C. S. Wang, Chem 2018, 4, 174; e) X. L. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Y. Yang, S. C. Liou, K. Amine, K. Xu, C. S. Wang, Nat. Nanotechnol. 2018, 13, 1191; f) R. R. Miao, J. Yang, X. J. Feng, H. Jia, J. L. Wang, Y. N. Nuli, J. Power Sources 2014, 271, 291; g) J. F. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J. G. Zhang, Nat. Commun. 2015, 6, 6362; h) G. Y. Zheng, C. Wang, A. Pei, J. Lopez, F. F. Shi, Z. Chen, A. D. Sendek, H. W. Lee, Z. D. Lu, H. Schneider, M. M. Safont-Sempere, S. Chu, Z. N. Bao, Y. Cui, ACS Energy Lett. 2016, 1, 1247; i) M. Rohde, P. Eiden, V. Leppert, M. Schmidt, A. Garsuch, G. Semrau, I. Krossing, ChemPhysChem 2015, 16, 666.
- 25a) C. C. Su, M. He, P. C. Redfern, L. A. Curtiss, I. A. Shkrob, Z. C. Zhang, Energy Environ. Sci. 2017, 10, 900; b) S. Y. Li, W. D. Zhang, Q. Wu, L. Fan, X. Y. Wang, X. Wang, Z. Y. Shen, Y. He, Y. Y. Lu, Angew. Chem. Int. Ed. 2020, 59, 14935; c) W. J. Xue, M. J. Huang, Y. T. Li, Y. G. Zhu, R. Gao, X. H. Xiao, W. X. Zhang, S. P. Li, G. Y. Xu, Y. Yu, P. Li, J. Lopez, D. W. Yu, Y. H. Dong, W. W. Fan, Z. Shi, R. Xiong, C. J. Sun, I. Hwang, W. K. Lee, Y. Shao-Horn, J. A. Johnson, J. Li, Nat. Energy 2021, 6, 495; d) Q. Q. Zhang, K. Liu, F. Ding, W. Li, X. J. Liu, J. L. Zhang, Electrochim. Acta 2019, 298, 818; e) Y. L. Jie, X. J. Liu, Z. W. Lei, S. Y. Wang, Y. W. Chen, F. Y. Huang, R. G. Cao, G. Q. Zhang, S. H. Jiao, Angew. Chem. Int. Ed. 2020, 59, 3505; f) J. Kim, H. Q. Pham, G. J. Chung, E. H. Hwang, Y. G. Kwon, S. W. Song, Electrochim. Acta 2021, 367, 137527; g) H. J. Zhao, Y. X. Qian, S. G. Hu, G. F. Luo, C. X. Nie, P. Q. Qiu, Y. Y. Kang, H. Wang, Y. L. Chu, Q. R. Wang, J. Wang, H. Y. Shao, K. Xu, Y. H. Deng, ACS Appl. Mater. Interfaces 2021, 13, 29676; h) F. Aupperle, G. G. Eshetu, K. W. Eberman, A. Xioa, J. S. Bridel, E. Figgemeier, J. Mater. Chem. A 2020, 8, 19573; i) Q. Ran, H. Zhao, Y. Hu, Q. Shen, W. Liu, J. Liu, X. Shu, M. Zhang, S. Liu, M. Tan, H. Li, X. Liu, Electrochim. Acta 2018, 289, 82; j) D. H. Kim, M. Y. Kim, S. H. Yang, H. M. Ryu, H. Y. Jung, H.-J. Ban, S.-J. Park, J. S. Lim, H.-S. Kim, J. Ind. Eng. Chem. 2019, 71, 445.
- 26H. Braun, R. Asakura, A. Remhof, C. Battaglia, ACS Energy Lett. 2024, 9, 707.
- 27Z. Y. Wu, S. F. Li, Y. F. Huang, Energy Storage Mater. 2024, 68, 10333010.
- 28L. Zhang, S. Wang, L. Zhu, L. He, S. He, X. Qin, C. Zhao, F. Kang, B. Li, Nano Energy 2022, 97, 107119.