A Ratiometric Time-Gated Luminescence Probe for Imaging H2O2 in Endoplasmic Reticulum of Living Cells and Its Application to Smartphone-Guided Bioimaging
Yundi Huang
School of Chemistry, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorKaiwen Chen
School of Bioengineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorDeshu Kong
School of Chemistry, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Bo Song
School of Chemistry, Dalian University of Technology, Dalian, 116024 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXinyue Zhang
School of Chemistry, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorQi Liu
School of Chemistry, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Jingli Yuan
College of Life Science, Dalian Minzu University, Dalian, 116600 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYundi Huang
School of Chemistry, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorKaiwen Chen
School of Bioengineering, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorDeshu Kong
School of Chemistry, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Bo Song
School of Chemistry, Dalian University of Technology, Dalian, 116024 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXinyue Zhang
School of Chemistry, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorQi Liu
School of Chemistry, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Jingli Yuan
College of Life Science, Dalian Minzu University, Dalian, 116600 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The significance of H2O2 as a marker of reactive oxygen species (ROS) and oxidative stress in living organisms has spurred growing interest in its roles in inflammation and disease progression. In this report, a ratiometric time-gated luminescence (RTGL) probe is proposed based on mixed lanthanide complexes, ER-BATTA-Tb3+/Eu3+, for imaging the H2O2 generation both in vitro and in vivo. Upon exposure to H2O2, the probe undergoes cleavage of the benzyl boric acid group, releasing hydroxyl (─OH) groups, which significantly reduces the emission of the Eu3+ complex while slightly increasing the emission of the Tb3+ complex. This response allows the I540/I610 ratio to be used as an indicator for monitoring the H2O2 level changes. The probes are capable of selectively accumulating in the endoplasmic reticulum (ER), allowing effective imaging of H2O2 in the ER of living cells and liver-injured mice under oxidative stress. Moreover, by integrating ER-BATTA-Tb3+/Eu3+ into (polyethylene glycol) PEG hydrogels, the H2O2-responsive smart sensor films, PEG-H2O2-Sensor films, are created, which enable the real-time monitoring of H2O2 levels in various wounds using a smartphone imaging platform and R/G channel evaluation. The sensor films are also innovatively applied for the in situ monitoring of H2O2 in brains of epileptic rats, facilitating the precise assessment of brain damage. This study provides a valuable tool for the quantitative detection of H2O2 in vitro and in vivo, as well as for the clinical monitoring and treatment of H2O2-related diseases in multiple scenarios.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202407631-sup-0001-SuppMat.docx8.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) F. Liu, L. Yang, X. Yin, X. Liu, L. Ge, F. Li, Biosens. Bioelectron. 2019, 141, 111446; b) J. Xiong, L. Xia, L. Li, M. Cui, Y. Gu, P. Wang, Sens. Act., B. 2019, 288, 127.
- 2a) S. Hosogi, Y. Marunaka, E. Ashihara, T. Yamada, A. Sumino, H. Tanaka, L. Puppulin, Biosens. Bioelectron. 2021, 179, 113077; b) H. Li, Q. Yao, J. Fan, J. Du, J. Wang, X. Peng, Biosens. Bioelectron. 2017, 94, 536; c) P. Wei, Q. Wang, T. Yi, Chin. J. Chem. 2022, 40, 1964; d) K. Hoshi, M. S. Messina, J. Ohata, C. Y. Chung, C. J. Chang, Nat. Protoc. 2022, 17, 1691.
- 3D. Pham, U. Basu, I. Pohorilets, C. M. St Croix, S. C. Watkins, K. Koide, Angew. Chem., Int. Ed. Engl. 2020, 59, 17435.
- 4J. Sastre, A. E. K. Loo, Y. T. Wong, R. Ho, M. Wasser, T. Du, W. T. Ng, B. Halliwell, PLoS One 2012, 7, e49215.
- 5K. Pardo-Peña, A. Sánchez-Lira, J. C. Salazar-Sánchez, A. Morales-Villagrán, NeuroReport 2018, 29, 621.
- 6a) E. Margittai, B. Enyedi, M. Csala, M. Geiszt, G. Banhegyi, Free Radical Biol. Med. 2015, 83, 331; b) C. Gao, Y. Tian, R. Zhang, J. Jing, X. Zhang, Anal. Chem. 2017, 89, 12945.
- 7a) T. Konno, E. P. Melo, J. E. Chambers, E. Avezov, Cells 2021, 10, 233; b) S. Lortz, S. Lenzen, I. Mehmeti, Free Radical Biol. Med. 2015, 80, 77.
- 8T. Ramming, H. G. Hansen, K. Nagata, L. Ellgaard, C. Appenzeller-Herzog, Free Radical Biol. Med. 2014, 70, 106.
- 9a) Z. Quan, J. Gu, P. Dong, J. Lu, X. Wu, W. Wu, X. Fei, S. Li, Y. Wang, J. Wang, Y. Liu, Cancer Lett. 2010, 295, 252; b) F. Tang, C. Wu, Z. Zhai, K. Wang, X. Liu, H. Xiao, S. Zhuo, P. Li, B. Tang, Analyst 2022, 147, 987.
- 10M. K. Goshisht, N. Tripathi, G. K. Patra, M. Chaskar, Chem. Sci. 2023, 14, 5842.
- 11R. F. Nogueira, M. C. Oliveira, W. C. Paterlini, Talanta 2005, 66, 86.
- 12J. Q. Chen, S. F. Xue, Z. H. Chen, S. Zhang, G. Shi, M. Zhang, Biosens. Bioelectron. 2018, 100, 526.
- 13Y. C. Chen, Y. J. Liu, C. L. Lee, K. Y. Pham, D. Manoharan, S. Thangudu, C. H. Su, C. S. Yeh, Adv. Healthcare Mater. 2022, 11, 2201613.
- 14T. M. Gill, X. Zheng, Chem. Mater. 2020, 32, 6285.
- 15P. K. Mishra, I. Park, N. Sharma, C. M. Yoo, H. Y. Lee, H. W. Rhee, Anal. Chem. 2022, 94, 14869.
- 16a) A. Dutta, U. Maitra, ACS Sens. 2022, 7, 513; b) D.-J. Zheng, Y.-S. Yang, H.-L. Zhu, TrAC, Trends Anal. Chem. 2019, 118, 625.
- 17a) E. P. Melo, C. Lopes, P. Gollwitzer, S. Lortz, S. Lenzen, I. Mehmeti, C. F. Kaminski, D. Ron, E. Avezov, BMC Biol. 2017, 15, 24; b) H. Xiao, P. Li, X. Hu, X. Shi, W. Zhang, B. Tang, Chem. Sci. 2016, 7, 6153.
- 18a) H. Ma, K. Chen, B. Song, Z. Tang, Y. Huang, T. Zhang, H. Wang, W. Sun, J. Yuan, Biosens. Bioelectron. 2020, 168, 112560; b) R. Zhang, J. Yuan, Acc. Chem. Res. 2020, 53, 1316.
- 19C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, M. S. Zinkernagel, Prog. Retinal Eye Res. 2017, 60, 120.
- 20X. Zhu, X. Wang, H. Zhang, F. Zhang, Angew. Chem., Int. Ed. Engl. 2022, 61, 202209378.
- 21a) D. Zhang, B. Ren, Y. Zhang, L. Xu, Q. Huang, Y. He, X. Li, J. Wu, J. Yang, Q. Chen, Y. Chang, J. Zheng, J. Mater. Chem. B. 2020, 8, 3171; b) F. Lv, L. Mao, T. Liu, Mater. Sci. Eng., C. 2014, 43, 221.
- 22a) M. Wu, Y. Zhang, Q. Liu, H. Huang, X. Wang, Z. Shi, Y. Li, S. Liu, L. Xue, Y. Lei, Biosens. Bioelectron. 2019, 142, 111547;
b) S. Huang, J. Yao, B. Li, G. Ning, Q. Xiao, Mikrochim. Acta. 2021, 188, 318;
c) Y.-H. Tsou, X.-Q. Zhang, X. Bai, H. Zhu, Z. Li, Y. Liu, J. Shi, X. Xu, Adv. Funct. Mater. 2018, 28, 34;
10.1002/adfm.201802607 Google Scholard) Y. Cao, J. Li, M. Chen, L. Zhou, Q. Zhang, W. Liu, Y. Liu, Microchem. J. 2022, 181, 107801.
- 23J. Y. C. Lim, S. S. Goh, X. J. Loh, ACS Mater. Lett. 2020, 2, 918.
- 24W. Su, J. Yin, R. Wang, M. Shi, P. Liu, Z. Qin, R. Xing, T. Jiao, Colloids Surf., A. 2021, 612, 125993.
- 25a) R. Jin, D. Kong, X. Yan, X. Zhao, H. Li, F. Liu, P. Sun, Y. Lin, G. Lu, ACS Appl. Mater. Interfaces 2019, 11, 27605; b) X. Liu, Z. Chen, R. Gao, C. Kan, J. Xu, Sens. Act., B. 2021, 340, 129958; c) J. Huang, Y. Zheng, H. Niu, J. Huang, X. Zhang, J. Chen, B. Ma, C. Wu, Y. Cao, Y. Zhu, Adv. Healthcare Mater. 2024, 13, 2302328.
- 26a) Z. Tang, B. Song, W. Zhang, L. Guo, J. Yuan, Anal. Chem. 2019, 91, 14019; b) Z. Tang, B. Song, H. Ma, T. Luo, L. Guo, J. Yuan, Anal. Chem. 2019, 91, 2939; c) Y. Huang, B. Song, K. Chen, Z. Tang, H. Ma, D. Kong, Q. Liu, J. Yuan, Anal. Chem. 2023, 95, 4024.
- 27J. Ma, X. Wang, N. Li, Y. Cheng, Sens. Act., B. 2021, 346, 130536.
- 28a) S. Shinkai, K. Tsukagoshi, Y. Ishikawa, T. Kunitake, J. Chem. Soc., Chem. Commun. 1991, 15, 1039; b) G. Schroer, J. Deischter, T. Zensen, J. Kraus, A.-C. Pöppler, L. Qi, S. Scott, I. Delidovich, Green Chem. 2020, 22, 550.
- 29J. Li, X. Ma, W. Yang, C. Guo, J. Zhai, X. Xie, Anal. Chem. 2021, 93, 11758.
- 30a) H. Xiao, P. Li, X. Hu, X. Shi, W. Zhang, B. Tang, Chem. Sci. 2016, 7, 6153; b) R. Huang, L. Zhao, H. Chen, R. H. Yin, C. Y. Li, Y. Q. Zhan, J. H. Zhang, C. H. Ge, M. Yu, X. M. Yang, PLoS One 2014, 9, e96246.
- 31D. Cheng, J. Peng, Y. Lv, D. Su, D. Liu, M. Chen, L. Yuan, X. Zhang, J. Am. Chem. Soc. 2019, 141, 6352.
- 32a) R. Agarwal, L. A. MacMillan-Crow, T. M. Rafferty, H. Saba, D. W. Roberts, E. K. Fifer, L. P. James, J. A. Hinson, J. Pharmacol. Exp. Ther. 2011, 337, 110; b) W.-L. Jiang, W.-X. Wang, J. Liu, Y. Li, C.-Y. Li, Sens. Actuators, B. 2020, 313, 128054.
- 33a) Y. Feng, R. Cui, Z. Li, X. Zhang, Y. Jia, X. Zhang, J. Shi, K. Qu, C. Liu, J. Zhang, Oxid. Med. Cell. Longev. 2019, 2019, 7067619; b) L. Dara, C. Ji, N. Kaplowitz, Hepatology 2011, 53, 1752.
- 34a) M. Villanueva-Paz, L. Moran, N. Lopez-Alcantara, C. Freixo, R. J. Andrade, M. I. Lucena, F. J. Cubero, Antioxidants 2021, 10, 390; b) M. Chen, A. Suzuki, J. Borlak, R. J. Andrade, M. I. Lucena, J. Hepatol. 2015, 63, 503.
- 35J. Chen, D. Huang, M. She, Z. Wang, X. Chen, P. Liu, S. Zhang, J. Li, ACS Sens. 2021, 6, 628.
- 36S. Pu, Y. Pan, Q. Zhang, T. You, T. Yue, Y. Zhang, M. Wang, Molecules 2023, 28, 3160.
- 37M. Malinouski, Y. Zhou, V. V. Belousov, D. L. Hatfield, V. N. Gladyshev, PLoS One 2011, 6, e14564.
- 38J. Hu, V. K. Ramshesh, M. R. McGill, H. Jaeschke, J. J. Lemasters, Toxicol. Sci. 2016, 150, 204.
- 39V. Blahnik, O. Schindelbeck, Adv. Opt. Technol. 2021, 10, 145.
- 40W. Song, N. Jiang, H. Wang, J. Vincent, Sens. Actuators, B. 2020, 304, 127247.
- 41E. M. Ahmed, J. Adv. Res. 2015, 6, 105.
- 42a) S. Polaka, P. Katare, B. Pawar, N. Vasdev, T. Gupta, K. Rajpoot, P. Sengupta, R. K. Tekade, ACS Omega 2022, 7, 30657; b) A. E. Loo, Y. T. Wong, R. Ho, M. Wasser, T. Du, W. T. Ng, B. Halliwell, PLoS One 2012, 7, e49215; c) K. Wu, X. Wu, M. Chen, H. Wu, Y. Jiao, C. Zhou, Chem. Eng. J. 2020, 387, 124127.
- 43G. Zhu, Q. Wang, S. Lu, Y. Niu, Med. Princ. Pract. 2017, 26, 301.
- 44a) S. Guo, L. A. Dipietro, J. Dent. Res. 2010, 89, 219; b) C. Li, Y. Li, Q. Wu, T. Sun, Z. Xie, Biomater. Sci. 2021, 9, 7648.
- 45a) M. C Sanchez, S. Lancel, E. Boulanger, R. Neviere, Antioxidants 2018, 7, 98; b) M. Schafer, S. Werner, Pharmacol. Res. 2008, 58, 165.
- 46a) E. Bellotti, A. L. Schilling, S. R. Little, P. Decuzzi, J. Controll. Release 2021, 329, 16; b) Q. Li, X. Shao, X. Dai, Q. Guo, B. Yuan, Y. Liu, W. Jiang, NPG Asia Mater. 2022, 14, 1.
- 47a) K. Pardo-Pena, A. Yanez-Hernandez, L. Medina-Ceja, A. Morales-Villagran, Exp. Brain Res. 2022, 240, 1191;
b) S. Puttachary, S. Sharma, S. Stark, T. Thippeswamy, Biomed Res. Int. 2015, 2015, 1;
c) K. Pardo-Peña, G. Camberos-Camarena, L. Medina-Ceja, A. Morales-Villagrán, IBRO Neurosci. Rep. 2023, 15, S326;
10.1016/j.ibneur.2023.08.601 Google Scholard) M. F. Munguia-Martinez, C. Nava-Ruiz, A. Ruiz-Diaz, A. Diaz-Ruiz, P. Yescas-Gomez, M. Mendez-Armenta, Oxid. Med. Cell. Longevity. 2019, 2019, 1.10.1155/2019/1327986 Google Scholar
- 48X. Gao, W. Zhang, Z. Dong, J. Ren, B. Song, R. Zhang, J. Yuan, Anal. Chem. 2023, 95, 18530.
- 49C. H. Lin, S. P. Hsu, T. C. Cheng, C. W. Huang, Y. C. Chiang, I. H. Hsiao, M. H. Lee, M. L. Shen, D. C. Wu, N. Zhou, Sci. Rep. 2017, 7, 11884.
- 50a) G. L. Holmes, Epilepsia 1997, 38, 12; b) X. Luo, Z. Cheng, R. Wang, F. Yu, Anal. Chem. 2021, 93, 2490.