Composite Solid-State Electrolyte with Vertical Ion Transport Channels for All-Solid-State Lithium Metal Batteries
Hao Sun
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404 China
Search for more papers by this authorGuangzeng Cheng
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404 China
Search for more papers by this authorHaoran Wang
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404 China
Search for more papers by this authorYanan Gao
Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou, Hainan, 570228 China
Search for more papers by this authorCorresponding Author
Jingyi Wu
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404 China
E-mail: [email protected]
Search for more papers by this authorHao Sun
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404 China
Search for more papers by this authorGuangzeng Cheng
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404 China
Search for more papers by this authorHaoran Wang
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404 China
Search for more papers by this authorYanan Gao
Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou, Hainan, 570228 China
Search for more papers by this authorCorresponding Author
Jingyi Wu
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266404 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Composite solid electrolytes (CSEs) consisting of polymers and fast ionic conductors are considered a promising strategy for realizing safe rechargeable batteries with high energy density. However, randomly distributed fast ionic conductor fillers in the polymer matrix result in tortuous and discontinuous ion channels, which severely constrains the ion transport capacity and restricts its practical application. Here, CSEs with highly loaded vertical ion transport channels are fabricated by magnetically manipulating the alignment of Li0.35La0.55TiO3 nanowires. The construction of densely packed, vertically aligned ion transport channels can effectively enhance the ion transport capacity of the electrolyte, thereby significantly increasing ionic conductivity. At room temperature (RT), the presented CSE exhibits a remarkable ionic conductivity of up to 2.5 × 10−4 S cm−1. The assembled LiFePO4/Li cell delivers high capacities of 118 mAh g−1 at 5 C at 60 °C and a RT capacity of 115 mAh g−1 can be achieved at a charging rate of 0.5 C. This work paves an encouraging avenue for further development of advanced CSEs that favor lithium metal batteries with high energy density and electrochemical performance.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202407476-sup-0001-SuppMat.docx4.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Dong, J. Zhang, G. Xu, J. Chai, H. Du, L. Wang, H. Wen, X. Zang, A. Du, Q. Jia, X. Zhou, G. Cui, Energy Environ. Sci. 2018, 11, 1197.
- 2X. Shen, H. Liu, X.-B. Cheng, C. Yan, J.-Q. Huang, Energy Storage Mater. 2018, 12, 161.
- 3H. Jiang, L. Wei, X. Fan, J. Xu, W. Shyy, T. Zhao, Sci. Bull. 2019, 64, 270.
- 4K. Liu, R. Zhang, J. Sun, M. Wu, T. Zhao, ACS Appl. Mater. Interfaces 2019, 11, 46930.
- 5D. Dai, P. Yan, X. Zhou, H. Li, Z. Zhang, L. Wang, M. Han, X. Lai, Y. Qiao, M. Jia, B. Li, D.-H. Liu, Green Carbon 2024, 2, 310
10.1016/j.greenca.2024.06.002 Google Scholar
- 6L. Zhang, Y. Liu, Y. You, A. Vinu, L. Mai, Interdiscip. Mater. 2022, 2, 91.
- 7D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen, R. Cui, Y. Shen, G. Li, R. Feng, S. Zhang, G. Jiang, L. Chen, A. Yu, X. Wang, Nat. Commun. 2021, 12, 186.
- 8Y. Nie, T. Yang, D. Luo, Y. Liu, Q. Ma, L. Yang, Y. Yao, R. Huang, Z. Li, E. M. Akinoglu, G. Wen, B. Ren, N. Zhu, M. Li, H. Liao, L. Tan, X. Wang, Z. Chen, Adv. Energy Mater. 2023, 13, 2204218.
- 9J. Bae, Y. Li, F. Zhao, X. Zhou, Y. Ding, G. Yu, Energy Storage Mater. 2018, 15, 46.
- 10Y. Zhong, C. Cao, L. Zhao, M. O. Tadé, Z. J. G. C. Shao, Green Carbon 2024, 2, 94.
10.1016/j.greenca.2024.02.005 Google Scholar
- 11G. Lu, G. Meng, Q. Liu, L. Feng, J. Luo, X. Liu, Y. Luo, P. K. Chu, Adv. Powder Mater. 2024, 3, 100154.
- 12D. Guo, D. B. Shinde, W. Shin, E. Abou-Hamad, A. H. Emwas, Z. Lai, A. Manthiram, Adv. Mater. 2022, 34, 2201410.
- 13Y. S. Lee, J. H. Lee, J. A. Choi, W. Y. Yoon, D. W. Kim, Adv. Funct. Mater. 2012, 23, 1019.
- 14X. Nie, J. Hu, C. Li, Interdiscip. Mater. 2023, 2, 365.
- 15Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Adv. Mater. 2018, 30, 1705702.
- 16D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Chem 2019, 5, 2326.
- 17J. Jie, Y. Liu, L. Cong, B. Zhang, W. Lu, X. Zhang, J. Liu, H. Xie, L. Sun, J. Energy Chem. 2020, 49, 80.
- 18H. Huang, C. Liu, Z. Liu, Y. Wu, Y. Liu, J. Fan, G. Zhang, P. Xiong, J. Zhu, Adv. Powder Mater. 2024, 3, 100141.
- 19P. Zhu, C. Yan, M. Dirican, J. Zhu, J. Zang, R. K. Selvan, C.-C. Chung, H. Jia, Y. Li, Y. Kiyak, N. Wu, X. Zhang, J. Mater. Chem. A 2018, 6, 4279.
- 20H. Qin, K. Fu, Y. Zhang, Y. Ye, M. Song, Y. Kuang, S.-H. Jang, F. Jiang, L. Cui, Energy Storage Mater. 2020, 28, 293.
- 21S. Li, S. Q. Zhang, L. Shen, Q. Liu, J. B. Ma, W. Lv, Y. B. He, Q. H. Yang, Sci. Adv. 2020, 7, 1903088.
- 22J. Zheng, M. Tang, Y. Y. Hu, Angew. Chem., Int. Ed 2016, 55, 12538.
- 23W. Tang, S. Tang, X. Guan, X. Zhang, Q. Xiang, J. Luo, Adv. Funct. Mater. 2019, 29, 1900648.
- 24J. Wu, Z. Rao, H. Wang, Y. Huang, SusMat 2022, 2, 660.
- 25J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L.-Q. Chen, J. Qin, Y. Cui, Nat. Nanotechnol. 2019, 14, 705.
- 26L. Han, J. Wang, X. Mu, T. Wu, C. Liao, N. Wu, W. Xing, L. Song, Y. Kan, Y. Hu, J. Colloid Interface Sci. 2021, 585, 596.
- 27H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal, Y. Yang, Nano Lett. 2017, 17, 3182.
- 28X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu, W. Liu, A. Pei, Y. Gong, H. Wang, K. Liu, Y. Xiang, Y. Cui, Nano Lett. 2018, 18, 3829.
- 29X. Wang, H. Zhai, B. Qie, Q. Cheng, A. Li, J. Borovilas, B. Xu, C. Shi, T. Jin, X. Liao, Y. Li, X. He, S. Du, Y. Fu, M. Dontigny, K. Zaghib, Y. Yang, Nano Energy 2019, 60, 205.
- 30J. Dai, K. Fu, Y. Gong, J. Song, C. Chen, Y. Yao, G. Pastel, L. Zhang, E. Wachsman, L. Hu, ACS Mater. Lett. 2019, 1, 354.
- 31G. Cheng, H. Sun, H. Wang, Z. Ju, Y. Zhu, W. Tian, J. Chen, H. Wang, J. Wu, G. Yu, Adv. Mater. 2024, 36, 2312927.
- 32R. Paste, Y. T. Chen, K. Borde, A. Dhage, S. S. Sun, H. C. Lin, C. W. Chu, Small 2024, 20, 2311382.
- 33L. Zhu, P. Zhu, S. Yao, X. Shen, F. Tu, Int. J. Energy Res. 2019, 43, 4854.
- 34Y. Zhang, M. Yao, T. Wang, H. Wu, Y. Zhang, Angew. Chem., Int. Ed 2024, 63, e202403399.
- 35Y. Wang, P. Yuan, X. X. Liu, S. Feng, M. Cao, J. Ding, J. Liu, S. Z. Kure-Chu, T. Hihara, L. Pan, Z. Sun, Adv. Funct. Mater. 2024, 34, 2405060.
- 36M. M. Hantel, M. J. Armstrong, F. DaRosa, R. l'Abee, J. Electrochem. Soc. 2016, 164, A334.
10.1149/2.1071702jes Google Scholar
- 37A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2017, 2, 16103.
- 38S. Kobayashi, D. Yokoe, Y. Fujiwara, K. Kawahara, Y. Ikuhara, A. Kuwabara, Nano Lett. 2022, 22, 5516.
- 39Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, Joule 2022, 6, 1172.
- 40L. Zhuang, X. Huang, Y. Lu, J. Tang, Y. Zhou, X. Ao, Y. Yang, B. Tian, Ceram. Int. 2021, 47, 22768.
- 41Y. Guo, S. Pan, X. Yi, S. Chi, X. Yin, C. Geng, Q. Yin, Q. Zhan, Z. Zhao, F. M. Jin, H. Fang, Y. B. He, F. Kang, S. Wu, Q. H. Yang, Adv. Mater. 2023, 36, 2308493.
- 42S. Li, S. J. Yang, G. X. Liu, J. K. Hu, Y. L. Liao, X. L. Wang, R. Wen, H. Yuan, J. Q. Huang, Q. Zhang, Adv. Mater. 2023, 36, 2307768.
- 43R. Fang, Y. Liu, Y. Li, A. Manthiram, J. B. Goodenough, Mater. Today 2023, 64, 52.
- 44Y. Zhao, L. Li, D. Zhou, Y. Ma, Y. Zhang, H. Yang, S. Fan, H. Tong, S. Li, W. Qu, Angew. Chem., Int. Ed 2024, 63, e202404728.
- 45X. Li, J. Liang, J. T. Kim, J. Fu, H. Duan, N. Chen, R. Li, S. Zhao, J. Wang, H. Huang, X. Sun, Adv. Mater. 2022, 34, 2200856.
- 46Q. Liang, L. Chen, J. Tang, X. Liu, J. Liu, M. Tang, Z. J. E. S. M. Wang, Energy Storage Mater. 2023, 55, 847.
- 47M. Arrese-Igor, M. Martinez-Ibanez, E. Pavlenko, M. Forsyth, H. Zhu, M. Armand, F. Aguesse, P. J. A. E. L. Lopez-Aranguren, ACS Mater. Lett. 2022, 7, 1473.
- 48Z. Xie, Z. Wu, X. An, X. Yue, P. Xiaokaiti, A. Yoshida, A. Abudula, G. Guan, J. Membr. Sci. 2020, 596, 117739.
- 49T. Duan, H. Cheng, Y. Liu, Q. Sun, W. Nie, X. Lu, P. Dong, M.-K. Song, Energy Storage Mater. 2024, 65, 103091.
- 50Q. Liu, Y. Dan, M. Kong, Y. Niu, G. Li, Small 2023, 19, 2300118.
- 51L. Li, Y. Hu, H. Duan, Y. Deng, G. Chen, Small Methods 2023, 7, 2300314.
- 52C. Fu, M. Iacob, Y. Sheima, C. Battaglia, L. Duchêne, L. Seidl, D. M. Opris, A. Remhof, J. Mater. Chem. A. 2021, 9, 11794.
- 53Y. Zhang, H. Gao, J. Wang, Q. Chi, T. Zhang, C. Zhang, Y. Feng, Y. Zhang, D. Cao, K. Zhu, Inorg. Chem. Front. 2024, 11, 1289.