High-Valence Co Stabilized by In-Situ Growth of ZIF-67 on NiCo-LDH for Enhanced Performance in Oxygen Evolution Reaction
Yan-Kai Huang
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorTong Li
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorHan Feng
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorLuo-Tian Lv
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorTong-Xin Tang
Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorZhan Lin
Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Kai-Hang Ye
Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Chemical Engineering Guangdong Laboratory, Jieyang Branch of Chemistry, Jieyang, 515200 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yong-Qing Wang
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYan-Kai Huang
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorTong Li
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorHan Feng
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorLuo-Tian Lv
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorTong-Xin Tang
Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorZhan Lin
Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Kai-Hang Ye
Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 China
Chemical Engineering Guangdong Laboratory, Jieyang Branch of Chemistry, Jieyang, 515200 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yong-Qing Wang
School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The application of metal–organic frameworks (MOFs) in the electro-catalysis of heterogeneous structures is limited by the problems of low electrical conductivity and poor mechanical strength due to the complex synthesis process, although their high specific surface area and controllable structure. In this study, a method involving metal precipitation and ligand reaction is used during the electrochemical corrosion of hydroxides/oxy-hydroxides to obtain ZIF-67 in situ. The in situ growth technology not only effectively addresses the bonding strength and material conductivity challenges in the heterostructure between MOFs and the substrate but also enhances the catalyst's surface area and activity. Additionally, the exposure and protection of Co4+ by ZIF-67 contribute to the electrocatalyst's performance, demonstrating a low overpotential (η100) of 293 mV, a Tafel slope of 25.8 mV dec−1, and a charge transfer resistance of 3.9 Ω, with long-term robustness proven in continuous stability test exceeding 75 000 s under the superhigh current density of 500 mA cm−2. This work on binder-free in situ growth of MOFs not only provides relevant theoretical insights and experimental experience for cost-effective and controllable production of MOF-based catalysts but also offers ideas for the development of future electrocatalysts by exploring the exposure and protection of active site using MOFs materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202407443-sup-0001-SuppMat.docx29.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) H. B. Gray, Nat. Chem. 2009, 1, 7; b) N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
- 2F. Birol, Report prepared by IEA for the G20 2019, 82.
- 3a) G. Zhao, K. Rui, S. X. Dou, W. Sun, Adv. Funct. Mater. 2018, 28, 1803291; b) M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z. L. Wang, Nano Energy 2017, 37, 136.
- 4J. Kibsgaard, I. Chorkendorff, Nat. Energy 2019, 4, 430.
- 5L. Feng, H. Xue, ChemElectroChem. 2017, 4, 20.
- 6K. X. Zhang, R. Q. Zou, Small 2021, 17, 2100129.
- 7G. Chen, H. Wan, W. Ma, N. Zhang, Y. Cao, X. Liu, J. Wang, R. Ma, Adv. Energy Mater. 2020, 10, 1902535.
- 8Y. Zhang, Q. Zhou, J. Zhu, Q. Yan, S. X. Dou, W. Sun, Adv. Funct. Mater. 2017, 27, 1702317.
- 9N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao, S. Liu, J. Mater. Chem. A 2018, 6, 19912.
- 10X. Ma, K. Li, X. Zhang, B. Wei, H. Yang, L. Liu, M. Zhang, X. Zhang, Y. Chen, J. Mater. Chem. A 2019, 7, 14904.
- 11Y. Li, Z. Dong, L. Jiao, Adv. Energy Mater. 2020, 10, 1902104.
- 12W. Zhou, Z. Xue, Q. Liu, Y. Li, J. Hu, G. Li, ChemSusChem. 2020, 13, 5647.
- 13N. Zhao, H. Fan, M. Zhang, C. Wang, X. Ren, H. Peng, H. Li, X. Jiang, X. Cao, J. Alloys Compd. 2019, 796, 111.
- 14Y. Huang, X. Song, S. Chen, J. Zhang, H. Gao, J. Liao, C. Ge, W. Sun, Adv. Mater. Interfaces 2023, 10, 2202349.
- 15Y. Hao, Q. Liu, Y. Zhou, Z. Yuan, Y. Fan, Z. Ke, C. Y. Su, G. Li, Energy Environmen. Mater. 2019, 2, 18.
- 16T. Wu, M. Pi, X. Wang, D. Zhang, S. Chen, Phys. Chem. Chem. Phys. 2017, 19, 2104.
- 17R. Chen, H.-Y. Wang, J. Miao, H. Yang, B. Liu, Nano Energy 2015, 11, 333.
- 18T. Zhang, J. Du, H. Zhang, C. Xu, Electrochim. Acta 2016, 219, 623.
- 19Y. Tang, X. Fang, X. Zhang, G. Fernandes, Y. Yan, D. Yan, X. Xiang, J. He, ACS Appl. Mater. Interfaces 2017, 9, 36762.
- 20G. Li, P. Chen, W. Jiang, M. Wang, H. Jiang, Inorg. Chem. 2021, 60, 14880.
- 21L. Wang, Z. Wang, L. Xie, L. Zhu, X. Cao, ACS Appl. Mater. Interfaces 2019, 11, 16619.
- 22S. Hou, Y. Lian, Y. Bai, Q. Zhou, C. Ban, Z. Wang, J. Zhao, H. Zhang, Electrochim. Acta 2020, 341, 136053.
- 23H. M. Barkholtz, D.-J. Liu, Mater. Horiz. 2017, 4, 20.
- 24Z. Chen, Y. Ha, H. Jia, X. Yan, M. Chen, M. Liu, R. Wu, Adv. Energy Mater. 2019, 9, 1803918.
- 25H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
- 26H. S. Jadhav, H. A. Bandal, S. Ramakrishna, H. Kim, Adv. Mater. 2022, 34, 2107072.
- 27S. D. Worrall, H. Mann, A. Rogers, M. A. Bissett, M. P. Attfield, R. A. Dryfe, Electrochim. Acta 2016, 197, 228.
- 28a) L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen, Z. Ren, Adv. Funct. Mater. 2021, 31, 2006484; b) X. Tang, S. Zhao, J. Wu, Z. He, Y. Zhang, K. Huang, Z. Zou, X. Xiong, Food Chem. 2023, 427, 136648; c) D. Jiang, C.-Y. Wei, Z.-Y. Zhu, X.-H. Guan, M. Lu, X.-J. Zhang, G.-S. Wang, Inorg. Chem. Front. 2021, 8, 4324.
- 29C. T. Thanh Thu, H. J. Jo, G. Koyyada, D.-H. Kim, J. H. Kim, Materials 2023, 16, 5461.
- 30B. S. Marques, K. Dalmagro, K. S. Moreira, M. L. S. Oliveira, S. L. Jahn, T. A. de Lima Burgo, G. L. Dotto, J. Alloys Compd. 2020, 838, 155628.
- 31a) R. Zhong, H. Liao, Q. Deng, X. Zou, L. Wu, J. Mol. Struct. 2022, 1259, 132768; b) K. Li, Y. Zhang, P. Wang, X. Long, L. Zheng, G. Liu, X. He, J. Qiu, J. Alloys Compd. 2022, 903, 163701.
- 32a) Y. Xu, B. Li, S. Zheng, P. Wu, J. Zhan, H. Xue, Q. Xu, H. Pang, J. Mater. Chem. A 2018, 6, 22070; b) Y. Xue, Y. Wang, H. Liu, X. Yu, H. Xue, L. Feng, Chem. Commun. 2018, 54, 6204.
- 33a) Z. Cai, L. Li, Y. Zhang, Z. Yang, J. Yang, Y. Guo, L. Guo, Angew. Chem. 2019, 131, 4233;
10.1002/ange.201812601 Google Scholarb) J. Sun, N. Guo, Z. Shao, K. Huang, Y. Li, F. He, Q. Wang, Adv. Energy Mater. 2018, 8, 1800980; c) H. Zhou, M. Zheng, H. Tang, B. Xu, Y. Tang, H. Pang, Small 2020, 16, 1904252.
- 34Y. Zeng, L. Chen, R. Chen, Y. Wang, C. Xie, L. Tao, L. Huang, S. Wang, J. Mater. Chem. A 2018, 6, 24311.
- 35C. G. Morales-Guio, X. Hu, Acc. Chem. Res. 2014, 47, 2671.
- 36Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.-C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 2018, 140, 2610.
- 37Y. Gao, Z. Han, S. Hong, T. Wu, X. Li, J. Qiu, Z. Sun, ACS Appl. Energy Mater. 2019, 2, 6071.
- 38a) X. Huang, Y. Guo, Y. Zou, J. Jiang, Appl. Catal. B: Environmen. 2022, 309, 121247; b) A. Moysiadou, S. Lee, C.-S. Hsu, H. M. Chen, X. Hu, J. Am. Chem. Soc. 2020, 142, 11901; c) A. Ranjbari, K. Demeestere, K. H. Kim, P. M. Heynderickx, Appl. Catal. B-Environmen. 2023, 324, 122265.
- 39S. Survilienė, V. Jasulaitienė, A. Češūnienė, A. Lisowska-Oleksiak, Solid State Ionics 2008, 179, 222.
- 40J. Zhong, Q. Chen, C. Guo, W. Peng, Y. Li, F. Zhang, X. Fan, Int. J. Hydrogen Energy 2023, 48, 23530.
- 41J. Huang, H. Sheng, R. D. Ross, J. Han, X. Wang, B. Song, S. Jin, Nat. Commun. 2021, 12, 3036.
- 42a) S. Wang, Y. Hou, S. Lin, X. Wang, Nanoscale 2014, 6, 9930; b) Z.-Q. Liu, H. Cheng, N. Li, T. Y. Ma, Y.-Z. Su, Adv. Mater. (Weinheim, Ger.) 2016, 28, 3777.
- 43Y. Tang, X. Li, H. Lv, D. Xie, W. Wang, C. Zhi, H. Li, Adv. Energy Mater. 2020, 10, 2000892.
- 44a) J. Wang, L. Li, J. Li, L. Meng, C. Xue, G. Li, ChemCatChem 2018, 10, 4888; b) Q. Liu, H. Wang, X. Wang, R. Tong, X. Zhou, X. Peng, H. Wang, H. Tao, Z. Zhang, Int. J. Hydrogen Energy 2017, 42, 5560. c) J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu, Y. Huang, S. Yan, J. Li, S. Zhang, Energy Environmen. Sci. 2019, 12, 739.
- 45N. Yao, G. W. Wang, H. N. Jia, J. L. Yin, H. J. Cong, S. L. Chen, W. Luo, Angew. Chem. 2022, 61, 202117178.