High Entropy Oxide Duplex Yolk–Shell Structure with Isogenic Amorphous/Crystalline Heterophase as a Promising Anode Material for Lithium-Ion Batteries
Chunyan Zhang
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorMengfei Su
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorYana Luo
Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorXinyu Zhang
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorShengfa Li
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Feng Gao
Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qingyi Lu
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChunyan Zhang
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorMengfei Su
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorYana Luo
Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorXinyu Zhang
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorShengfa Li
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Feng Gao
Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qingyi Lu
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Achieving composition and structure regulation on high entropy materials is a big challenge but will give this kind of new materials a huge boost in energy storage. Herein, a novel high entropy oxide ((CrMnFeCoNi)3O4) duplex yolk–shell structure (DYSHEO) with isogenic amorphous/crystalline heterophase are designed and successfully prepared through a simple microthermal solvothermal reaction followed by mesothermal calcination. The microthermal solvothermal reaction results in high entropy precursor with duplex yolk–shell structure, while the mesothermal calcination (annealing temperature at 450 °C) realizes the precursor transformation to (CrMnFeCoNi)3O4 (DYSHEO-450) with isogenic amorphous/crystalline heterophase structure. The high entropy effect, the duplex yolk–shell structure, and the isogenic amorphous/crystalline heterophase endow DYSHEO-450 great advantages as lithium-ion battery anode including reducing ion migration obstruction, accommodating volume expansion, and alleviating the stress. Accordingly, DYSHEO-450 exhibits high capacities of 1721 mAh g−1@0.5 A g−1, and 1356 mAh g−1@1 A g−1 after 500 cycles with a capacity retention rate of 90.3%. It also shows excellent performances in practical application as anode of a coin-type full cell. This work provides new ideas and directions for the structural regulation of high-entropy materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202407361-sup-0001-SuppMat.docx2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Zeng, B. Ouyang, J. Liu, Y. W. Byeon, Z. J. Cai, L. J. Miara, Y. Wang, G. Ceder, Science 2022, 378, 1320.
- 2M. T. Ahsan, D. P. Qiu, Z. Ali, Z. Fang, W. T. Zhao, T. Shen, Y. L. Hou, Adv. Energy Mater. 2024, 14, 2302733.
- 3L. Sun, J. A. Yuwono, S. L. Zhang, B. Chen, G. J. Li, H. Y. Jin, B. Johannessen, J. F. Mao, C. F. Zhang, M. Zubair, N. Bedford, Z. P. Guo, Adv. Mater. 2024, 36, 2401288.
- 4S. S. Aamlid, M. Oudah, J. Rottler, A. M. Hallas, J. Am. Chem. Soc. 2023, 145, 5991.
- 5M. Liang, H. N. Xie, B. Chen, H. Y. Qin, H. W. Zhang, J. Y. Wang, J. W. Sha, L. Y. Ma, E. Z. Liu, J. L. Kang, C. S. Shi, F. He, X. P. Han, W. B. Hu, N. Q. Zhao, C. N. He, Angew. Chem., Int. Ed. 2024, 63, 202401238.
- 6P. Kumar, S. Huang, D. H. Cook, K. Chen, U. Ramamurth, X. P. Tan, R. O. Ritchie, Nat. Commun. 2024, 15, 841.
- 7Y. Tang, R. X. Wang, B. Xiao, Z. R. Zhang, S. Li, J. W. Qiao, S. X. Bai, Y. Zhang, P. K. Liaw, Prog. Mater. Sci 2023, 135, 101090.
- 8W. L. Hsu, C. W. Tsai, A. C. Yeh, J. W. Yeh, Nat. Rev. Chem. 2024, 8, 471.
- 9H. Minouei, M. Jalaly, M. Kheradmandfard, M. Saboktakin Rizi, D.-E. Kim, S. I. Hong, Ceram. Int. 2023, 49, 11885.
- 10H. Minouei, N. Tsvetkov, M. Kheradmandfard, J. Han, D.-E. Kim, S. I. Hong, J. Power Sources 2022, 549, 232041.
- 11S. Y. Zhou, Y. X. Sun, T. Gao, J. H. Liao, S. X. Zhao, G. Z. Cao, Angew. Chem., Int. Ed. 2023, 62, 202311930.
- 12Q. Niu, M. Yang, D. Y. Luan, N. W. Li, L. Yu, X. W. Lou, Angew. Chem., Int. Ed. 2022, 61, 2213049.
- 13Z. H. Pei, H. B. Zhang, D. Y. Luan, X. W. Lou, Matter 2023, 6, 4128.
- 14X. R. Zhao, F. Zhang, H. Z. Li, H. T. Dong, C. C. Yan, C. Meng, Y. H. Sang, H. Liu, Y. G. Guo, S. H. Wang, Energy Environ. Sci. 2024, 17, 3629.
- 15P. K. Wu, X. K. Kong, Y. R. Feng, W. Ding, Z. G. Sheng, Q. C. Liu, G. B. Ji, Adv. Funct. Mater. 2023, 33, 2311983.
- 16X. Ma, C. Q. Ma, J. Xia, S. M. Han, H. F. Zhang, C. H. He, F. K. Feng, G. Lin, W. B. Cao, X. M. Meng, L. J. Zhu, X. J. Zhu, A. L. Wang, H. Q. Yin, Q. P. Lu, J. Am. Chem. Soc. 2024, 146, 20594.
- 17F. Dorosti, L. Ge, H. Wang, Z. H. Zhu, Prog. Mater. Sci 2023, 137, 101123.
- 18M. Chen, J. B. Liu, N. Kitiphatpiboon, X. M. Li, J. L. Wang, X. G. Hao, A. Abudula, Y. F. Ma, G. Q. Guan, Chem. Eng. J. 2022, 432, 134329.
- 19C. Liu, J. Q. Bi, L. L. Xie, X. C. Gao, J. C. Rong, J. Energy Storage 2023, 71, 108211.
- 20T. X. Nguyen, Y. H. Su, C. C. Lin, J. Ruan, J. M. Ting, Adv. Sci. 2021, 8, 2002446.
- 21R. Chang, H. D. Li, X. F. Tian, Y. Yang, T. Dong, Z. H. Wang, J. P. Lai, S. H. Feng, L. Wang, Small 2024, 20, 2309937.
- 22M. Liang, H. N. Xie, B. Chen, H. Y. Qin, H. W. Zhang, J. Y. Wang, J. W. Sha, L. Y. Ma, E. Z. Liu, J. L. Kang, C. S. Shi, F. He, X. P. Han, W. B. Hu, N. Q. Zhao, C. N. He, Angew. Chem., Int. Ed. 2024, 63, 202401238.
- 23S. H. Hou, L. Su, S. Wang, Y. J. Cui, J. Z. Cao, H. H. Min, J. Z. Bao, Y. B. Shen, Q. C. Zhang, Z. F. Sun, C. Y. Zhu, J. Chen, Q. B. Zhang, F. Xu, Adv. Funct. Mater. 2024, 34, 2307923.
- 24Q. H. Su, P. Y. Wang, Q. C. Liu, R. Sheng, W. H. Cheng, J. Ding, Y. P. Lei, Y. D. Huang, Appl. Catal. B- Environ. Energy 2024, 351, 123994.
- 25S. S. Hou, Y. Qi, J. Z. Bao, J. X. Shen, Y. Y. Han, D. D. Yuan, R. N. Fu, J. Luo, Q. C. Zhang, F. Xu, Nano Energy 2024, 130, 110121.
- 26B. Xiao, G. Wu, T. D. Wang, Z. G. Wei, Y. W. Sui, B. L. Shen, J. Q. Qi, F. X. Wei, J. C. Zheng, Nano Energy 2022, 95, 106962.
- 27D. Y. Feng, Y. B. Dong, L. L. Zhang, X. Ge, W. Zhang, S. Dai, Z. A. Qiao, Angew. Chem., Int. Ed. 2020, 59, 19503.
- 28F. Y. Zhai, X. Y. Zhu, W. F. Zhang, G. P. Cao, H. M. Zhang, Y. L. Xing, Y. Xiang, S. C. Zhang, J. Power Sources 2024, 603, 234418.
- 29T. X. Nguyen, J. Patra, J. K. Chang, J. M. Ting, J. Mater. Chem. A 2020, 8, 18963.
- 30Y. H. Zhang, S. Zhang, N. F. Hu, Y. H. Liu, J. Ma, P. X. Han, Z. W. Hu, X. G. Wang, G. L. Cui, Chem. Soc. Rev. 2024, 53, 3302.
- 31X. F. Liu, Y. Y. Xing, K. Xu, H. J. Zhang, M. X. Gong, Q. L. Jia, S. W. Zhang, W. Lei, Small 2022, 18, 2200524.
- 32X. L. Wang, E. M. Kim, T. G. Senthamaraikannan, D. H. Lim, S. M. Jeong, Chem. Eng. J. 2024, 484, 149509.
- 33C. Triolo, W. L. Xu, B. Petrovičovà, N. Pinna, S. Santangelo, Adv. Funct. Mater. 2022, 32, 2202892.
- 34K. Wang, W. B. Hua, X. H. Huang, D. Stenzel, J. B. Wang, Z. M. Y. Ding, Y. S. Cui, Q. Wang, H. Ehrenberg, B. Breitung, C. Kubel, X. K. Mu, Nat. Commun. 2023, 14, 1487.
- 35S. Osman, C. Peng, F. K. Li, H. L. Chen, J. D. Shen, Z. M. Zhong, W. J. Huang, D. F. Xue, J. Liu, Adv. Sci. 2022, 9, 2205575.
- 36B. J. Wu, Y. L. Zhang, Z. Q. Wang, Z. H. Wang, Z. Dong, Q. G. Zeng, K. N. Hui, Z. Liu, Z. Q. Peng, Adv. Mater. 2024, 36, 2407134.
- 37M. Y. Wang, X. F. Feng, S. Li, Y. X. Ma, Y. X. Peng, S. J. Yang, Y. N. Liu, H. T. Lei, J. S. Dang, W. Zhang, R. Cao, H. Q. Zheng, Adv. Funct. Mater. 2024, 34, 2410439.
- 38C. Bao, P. Chu, C. X. Xu, J. P. Yuan, L. J. Si, Z. Bo, K. Ostrikov, H. C. Yang, Energy Storage Mater. 2024, 69, 103408.
10.1016/j.ensm.2024.103408 Google Scholar
- 39M. F. Su, J. W. Shi, Q. L. Kang, D. W. Lai, Q. Y. Lu, F. Gao, Chem. Eng. J. 2022, 432, 134289.
- 40T. Q. He, X. Y. Kang, F. J. Wang, J. L. Zhang, T. Y. Zhang, F. Ran, Mat. Sci. Eng. R 2023, 154, 100737.
- 41A. R. C. Bredar, A. L. Chown, A. R. Burton, B. H. Farnum, ACS Appl. Energy Mater. 2020, 3, 66.
- 42F. Y. Zhai, X. Y. Zhu, W. F. Zhang, G. P. Cao, H. M. Zhang, Y. L. Xing, Y. Xiang, S. C. Zhang, J. Power Sources 2024, 603, 234418.
- 43M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87, 1051.
- 44M. Zhong, L. J. Kong, N. Li, Y. Y. Liu, J. Zhu, X. H. Bu, Coord. Chem. Rev. 2019, 388, 172.
- 45M. M. Yuan, H. J. Liu, F. Ran, Mater. Today 2023, 63, 360.
- 46Y. Y. Liu, Y. Y. Zhu, Y. Cui, Nat. Energy 2019, 4, 540.
- 47X. Jin, Y. H. Han, Z. F. Zhang, Y. W. Chen, J. M. Li, T. T. Yang, X. Q. Wang, W. X. Li, X. Han, Z. L. Wang, X. D. Liu, H. Jiao, X. X. Ke, M. L. Sui, R. G. Cao, G. Q. Zhang, Y. F. Tang, P. F. Yan, S. H. Jiao, Adv. Mater. 2022, 34, 2109356.
- 48Y. Zhao, J. J. Zhu, S. J. H. Ong, Q. Q. Yao, X. L. Shi, K. Hou, Z. J. Xu, L. H. Guan, Adv. Energy Mater. 2018, 8, 1802565.
- 49Y. X. Zeng, X. F. Lu, S. L. Zhang, D. Y. Luan, S. Li, X. W. Lou, Angew. Chem., Int. Ed. 2021, 60, 22189.
- 50Y. B. Kim, H. Y. Seo, S. H. Kim, T. H. Kim, J. H. Choi, J. S. Cho, Y. C. Kang, G. D. Park, Small Methods 2023, 7, 2201370.
- 51H. Li, Y. Y. He, Q. Wang, S. N. Gu, L. Wang, J. X. Yu, G. W. Zhou, L. Q. Xu, Adv. Energy Mater. 2023, 13, 2302901.
- 52Y. X. Zeng, J. Z. Xu, Y. Wang, S. Li, D. Y. Luan, X. W. Lou, Angew. Chem., Int. Ed. 2022, 61, 2212031.
- 53X. B. Yang, H. Q. Wang, Y. Y. Song, K. T. Liu, T. T. Huang, X. Y. Wang, C. F. Zhang, J. Li, ACS Appl. Mater. Interfaces 2022, 14, 26873.
- 54C. T. Chen, K. Iyoki, P. D. Hu, H. Yamada, K. Ohara, S. Sukenaga, M. Ando, H. Shibata, T. Okubo, T. Wakihara, J. Am. Chem. Soc. 2021, 143, 10986.