High-Performance Broad-Spectrum UV Photodetectors with Uniform Response: Engineering β-Ga2O3:Si/GaN:Si Heterojunctions via Thermal Oxidation for Optoelectronic Logic Gate and Multispectral Imaging
Jili Jiang
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorJiangshuai Luo
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorKe Ding
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorYan Tang
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorHong Zhang
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorLijuan Ye
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorDi Pang
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorHonglin Li
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorCorresponding Author
Wanjun Li
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
E-mail: [email protected]
Search for more papers by this authorJili Jiang
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorJiangshuai Luo
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorKe Ding
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorYan Tang
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorHong Zhang
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorLijuan Ye
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorDi Pang
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorHonglin Li
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
Search for more papers by this authorCorresponding Author
Wanjun Li
Chongqing Key Laboratory of Photo-Electric Functional Materials and Laser Technology, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Developing high-performance, broad-spectrum ultraviolet photodetectors (PDs) with uniform response is crucial for optoelectronic applications like spectral analysis, optoelectronic logic gates, and multispectral imaging. This study constructs n-n type β-Ga2O3:Si/GaN:Si heterojunction PDs using thermal oxidation, combining the advantages of β-Ga2O3:Si and GaN:Si for excellent broad-spectrum response (UV-A to UV-C). A proposed channel model for GaN:Si oxidation includes hole formation, vortex structure development, channel formation, and grain growth, providing a basis for understanding β-Ga2O3:Si/GaN:Si heterojunction formation. Uniform Si doping in the β-Ga2O3 layer, achieved through thermal oxidation, reduces resistivity, enhances the collection of photogenerated carriers from the underlying GaN layer, and hence enhances broad-spectrum response performance. The devices exhibit outstanding uniformity and sensitivity across the UV-A to UV-C range, with a peak responsivity of 2.44 × 104 A W−1 and a photocurrent-to-dark current ratio of 1.3 × 105. Applications include optoelectronic logic gates executing “OR gate” and “AND gate” logic operations with 254 and 365 nm UV light, and a single-pixel multispectral imaging system producing high-contrast, clear “CNU” images with 254, 295, and 365 nm UV light. This research advances the understanding of oxide heterojunction formation and offers a method for developing high-performance, uniformly responsive broad-spectrum UV photodetectors for optoelectronic applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202406447-sup-0001-SuppMat.docx23.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Li, T. Yan, X. Fang, Nat. Rew. Mater. 2023, 8, 587.
- 2P. P. Satheesh, H.-S. Jang, B. Pandit, S. Chandramohan, K. Heo, Adv. Funct. Mater. 2023, 33, 2212167.
- 3D. Fu, Y. Ma, S. Wu, L. Pan, Q. Wang, R. Zhao, X.-M. Zhang, J. Luo, InfoMat 2024, 3, e12602.
- 4Z. Peng, X. Hou, Z. Han, Z. Gan, C. Li, F. Wu, S. Bai, S. Yu, Y. Liu, K. Yang, X. Feng, H. Zhan, X. Zhao, G. Xu, S. Long, Adv. Funct. Mater. 2024, 2405277.
- 5C. Wu, F. Wu, H. Hu, S. Wang, A. Liu, D. Guo, Mater. Today Phys. 2022, 28, 100883.
- 6X. Hou, X. Zhao, Y. Zhang, Z. Zhang, Y. Liu, Y. Qin, P. Tan, C. Chen, S. Yu, M. Ding, G. Xu, Q. Hu, S. Long, Adv. Mater. 2022, 34, 2106923.
- 7J. Chen, W. Ouyang, W. Yang, J.-H. He, X. Fang, Adv. Funct. Mater. 2020, 30, 1909909.
- 8A. Younis, C.-H. Lin, X. Guan, S. Shahrokhi, C.-Y. Huang, Y. Wang, T. He, S. Singh, L. Hu, J. R. D. Retamal, Jr-H He, T. Wu, Adv. Mater. 2021, 33, 2005000.
- 9W. Yang, J. Chen, Y. Zhang, Y. Zhang, Jr-H He, X. Fang, Adv. Funct. Mater. 2019, 29, 1808182.
- 10M. Dong, X. Zheng, Q. Li, Y. Liu, X. Di, J. Meng, Z. Li, Mater. Today 2024, 74, 85.
- 11W. Kim, H. Kim, T. J. Yoo, J. Y. Lee, J. Y. Jo, B. H. Lee, A. A. Sasikala, G. Y. Jung, Y. Pak, Nat. Commun. 2022, 13, 720.
- 12H. Wu, Z. Liu, B. Wang, L. Zheng, S. Lian, J. Zhang, S. Zhang, G. Zhang, Z. Xue, S. Yang, X. Cheng, G. Ding, Z. Liu, C. Ye, ACS Photonics 2024, 11, 1342.
- 13U. Varshney, N. Aggarwal, G. Gupta, J. Mater. Chem. C 2022, 10, 1573.
- 14K. Arora, N. Goel, M. Kumar, ACS Photonics 2018, 5, 2391.
- 15H. Chen, P. Yu, Z. Zhang, F. Teng, L. Zheng, K. Hu, X. Fang, Small 2016, 12, 5809.
- 16S. Lyu, A. Pasquarello, Appl. Phys. Lett. 2020, 117, 102103.
- 17W.-Y. Kong, G.-A. Wu, K.-Y. Wang, T.-F. Zhang, Y.-F. Zou, D.-D. Wang, L.-B. Luo, Adv. Mater. 2016, 28, 10725.
- 18M. Labed, N. Sengouga, C. Venkata Prasad, M. Henini, Y. S. Rim, Mater. Today Phys. 2023, 36, 101155.
- 19S. Fang, L. Li, W. Wang, W. Chen, D. Wang, Y. Kang, X. Liu, H. Jia, Y. Luo, H. Yu, M. H. Memon, W. Hu, B. S. Ooi, Jr-H. He, H. Sun, Adv. Mater. 2023, 35, 2300911.
- 20D. Y. Guo, Y. L. Su, H. Z. Shi, P. G. Li, N. Zhao, J. H. Ye, S. L. Wang, A. P. Liu, Z. W. Chen, C. R. Li, W. H. Tang, ACS Nano 2018, 12, 12827.
- 21Y. Han, Y. Wang, S. Fu, J. Ma, H. Xu, B. Li, Y. Liu, Small 2023, 19, 2206664.
- 22Y. Han, Y. Wang, D. Xia, S. Fu, C. Gao, J. Ma, H. Xu, B. Li, A. Shen, Y. Liu, Small Methods 2023, 7, 2300041.
- 23U. Varshney, A. Sharma, P. Vashishtha, L. Goswami, G. Gupta, ACS Appl. Electron. Mater. 2022, 4, 5641.
- 24J. Zhao, R. Yin, R. Xu, H. Zhang, K. Chen, S. Xu, T. Tao, Z. Zhuang, B. Liu, Y. Xiong, J. Chang, ACS Appl. Mater. Interfaces 2024, 16, 20794.
- 25S. Zheng, J. Li, D. Zhang, Z. Zhou, J. Liu, Y. Tao, X. Fang, X. Yang, G. Han, X. Lu, G. Wang, B. Zhang, D. Wang, X. Zhou, Adv. Funct. Mater. 2024, 34, 2309418.
- 26R. Tang, G. Li, Y. Jiang, N. Gao, J. Li, C. Li, K. Huang, J. Kang, T. Wang, R. Zhang, ACS Appl. Electron. Mater 2021, 4, 188.
- 27J. Wang, X. Ji, Z. Yan, X. Yan, C. Lu, Z. Li, S. Qi, S. Li, X. Qi, S. Zhang, S. Hu, P. Li, Mater. Sci. Semicond. Process. 2023, 159, 107372.
- 28A. Hernandez, M. Islam, P. Saddatkia, C. Codding, P. Dulal, S. Agarwal, A. Janover, S. Novak, M. Huang, T. Dang, M. Snure, F. A. Selim, Results Phys. 2021, 25, 104167.
- 29K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, G. Jessen, Appl. Phys. Lett. 2017, 1, 111.
- 30Z. Yang, X. Xu, Y. Wang, S. Kuang, D. Chen, H. Qi, K. H. L. Zhang, Appl. Phys. Lett. 2023, 17, 122.
- 31L. Shen, X. Pan, T. Zhang, Y. Liu, N. Wang, P. Wang, F. Wang, G. Zhu, J. Wang, Z. Ye, J. Electron. Mater. 2022, 51, 3579.
- 32W. Chen, D. Wang, W. Wang, Y. Kang, X. Liu, S. Fang, L. Li, Y. Luo, K. Liang, Y. Liu, D. Luo, M. H. Memon, H. Yu, W. Gu, Z. Liu, W. Hu, H. Sun, Adv. Mater. 2024, 36, 2307779.
- 33W. Xu, B. Li, Y. Wu, Z. Dong, K. Zhang, Q. Wang, S. Feng, W. Lu, ACS Appl. Mater. Interfaces 2024, 16, 35303.
- 34T. Chen, X. Zhang, Y. Ma, T. He, X. Wei, W. Tang, W. Tang, X. Zhou, H. Fu, L. Zhang, K. Xu, C. Zeng, Y. Fan, Y. Cai, B. Zhang, Adv. Photonics Res. 2021, 2, 2100049.
- 35W. Chen, X. Xu, M. Li, S. Kuang, K. H. L. Zhang, Q. Cheng, Adv. Opt. Mater. 2023, 11, 2202847.
- 36Z. Cai, X. He, K. Wang, X. Hou, Y. Mei, L. Ying, B. Zhang, H. Long, Small Methods 2023, 8, 2301148.
- 37C. Tang, Y. Bando, Z. Liu, Appl. Phys. Lett. 2003, 83, 3177.
- 38C. Lu, M. Li, L. Gao, Q. Zhang, M. Zhu, X. Lyu, Y. Wang, J. Liu, P. Liu, L. Wang, H. Tao, J. Song, A. Ji, P. Li, L. Gu, Z. Cao, N. Lu, ACS Nano 2024, 18, 5374.
- 39J. Wang, L. Ye, X. Wang, H. Zhang, L. Li, C. Kong, W. Li, J. Alloys Compd. 2019, 803, 9.
- 40L. Ye, J. Yu, H. Zhang, H. Li, D. Pang, Y. Tang, C. Kong, L. Fang, H. Ruan, W. Li, Appl. Phys. Lett. 2024, 1, 125.
- 41Z. Y. Wu, Z. X. Jiang, C. C. Ma, W. Ruan, Y. Chen, H. Zhang, G. Q. Zhang, Z. L. Fang, J. Y. Kang, T. Y. Zhang, Mater. Today Phys. 2021, 17, 100356.
- 42Y. Liu, S. Wei, C. Shan, M. Zhao, S. Y. Lien, M. K. Lee, J. Mater. Res. Technol. 2022, 21, 3113.
- 43K. Deng, X. Wang, S. Huang, P. Li, Q. Jiang, H. Yin, J. Fan, K. Wei, Y. Zheng, J. Shi, X. Liu, ACS Appl. Mater. Interfaces 2023, 15, 25058.
- 44L. Huang, Z. Hu, H. Zhang, Y. Xiong, S. Fan, C. Kong, W. Li, L. Ye, H. Li, J. Mater. Chem. C 2021, 9, 10354.
- 45D. Kaur, R. Rakhi, R. Posti, J. Singh, D. Roy, S. Sarkar, M. Kumar, Small 2024, 20, 2309277.
- 46J. Chen, J. Zhao, S. Feng, L. Zhang, Y. Cheng, H. Liao, Z. Zheng, X. Chen, Z. Gao, K. J. Chen, M. Hua, Adv. Mater. 2023, 35, 2208960.
- 47T. Yamada, J. Ito, R. Asahara, K. Watanabe, M. Nozaki, S. Nakazawa, Y. Anda, M. Ishida, T. Ueda, A. Yoshigoe, T. Hosoi, T. Shimura, H. Watanabe, J. Appl. Phys. 2017, 3, 121.
- 48M. Reiner, C. Koller, K. Pekoll, R. Pietschnig, C. Ostermaier, MRS Online Proc. Libr. 2015, 15, 2133138.
- 49G. Zhang, L. Chen, L. Wang, Z. Lu, H. Dong, Z. Cheng, X. Zhang, X. Xu, B. Wang, S. Chen, J. Mater. Chem. A 2022, 10, 4053.
- 50U. Varshney, A. Sharma, L. Goswami, J. Tawale, G. Gupta, Vacuum 2023, 217, 112570.
- 51M. Labed, N. Sengouga, C. V. Prasad, M. Henini, Y. S. Rim, Mater. Today Phys. 2023, 36, 101155.
- 52S. Feng, J. Li, L. Feng, Z. Liu, J. Wang, C. Cui, O. Zhou, L. Deng, H. Xu, B. Leng, X.-Q. Chen, X. Jiang, B. Liu, X. Zhang, Adv. Mater. 2023, 35, 2308090.
- 53L. M. Peter, Chem. Rev. 1990, 90, 753.
- 54D. Seo, S. Won, J. T. Kim, T. D. Chung, Anal. Chem. 2022, 94, 2063.
- 55J. Ma, X. Xia, S. Yan, Y. Li, W. Liang, J. Yan, X. Chen, D. Wu, X. Li, Z. Shi, ACS Appl. Mater. Interfaces 2021, 13, 15409.
- 56A. Tanaka, W. Choi, R. Chen, S. A. Dayeh, Adv. Mater. 2017, 29, 1702557.
- 57C. Zhang, K. Liu, Q. Ai, X. Sun, X. Chen, J. Yang, Y. Zhu, Z. Cheng, B. Li, L. Liu, D. Shen, Mater. Today Phys 2023, 33, 101034.
- 58M. H. Memon, H. Yu, Y. Luo, Y. Kang, W. Chen, D. Li, D. Luo, S. Xiao, C. Zuo, C. Gong, C. Shen, L. Fu, B. S. Ooi, S. Liu, H. Sun, Nat. Electron. 2024, 7, 279.
- 59J. Chen, X. Liu, Z. Li, F. Cao, X. Lu, X. Fang, Adv. Funct. Mater. 2022, 32, 2201066.
- 60Y. Qin, L. H. Li, Z. Yu, F. Wu, D. Dong, W. Guo, Z. Zhang, J. H. Yuan, K. H. Xue, X. Miao, S. Long, Adv. Sci. 2021, 8, 2101106.
- 61W. Song, J. Chen, Z. Li, X. Fang, Adv. Mater. 2021, 33, 2101059.
- 62K. Ding, H. Zhang, J. Jiang, J. Luo, R. Wu, L. Ye, Y. Tang, D. Pang, H. Li, W. Li, Adv. Sci. 2024, 11, 2407822.