A Current Development of Energy Harvesting Systems for Energy-Independent Bioimplantable Biosensors
Hyojeong Choi
School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504 Republic of Korea
Search for more papers by this authorSwarup Biswas
School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504 Republic of Korea
Search for more papers by this authorPhilippe Lang
ITODYS, University of Paris, CNRS UMR 7086, 15 rue Jean-Antoine de Baif, Paris CEDEX 13, 75205 France
Search for more papers by this authorCorresponding Author
Jin-Hyuk Bae
School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hyeok Kim
School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorHyojeong Choi
School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504 Republic of Korea
Search for more papers by this authorSwarup Biswas
School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504 Republic of Korea
Search for more papers by this authorPhilippe Lang
ITODYS, University of Paris, CNRS UMR 7086, 15 rue Jean-Antoine de Baif, Paris CEDEX 13, 75205 France
Search for more papers by this authorCorresponding Author
Jin-Hyuk Bae
School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hyeok Kim
School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Biosensors have emerged as vital tools for the detection and monitoring of essential biological information. However, their efficiency is often constrained by limitations in the power supply. To address this challenge, energy harvesting systems have gained prominence. These off-grid, independent systems harness energy from the surrounding environment, providing a sustainable solution for powering biosensors autonomously. This continuous power source overcomes critical constraints, ensuring uninterrupted operation and seamless data collection. In this article, a comprehensive review of recent literature on energy harvesting-based biosensors is presented. Various techniques and technologies are critically examined, including optical, mechanical, thermal, and wireless power transfer, focusing on their applications and optimization. Furthermore, the immense potential of these energy harvesting-driven biosensors is highlighted across diverse fields, such as medicine, environmental surveillance, and biosignal analysis. By exploring the integration of energy harvesting systems, this review underscores their pivotal role in advancing biosensor technology. These innovations promise improved efficiency, reduced environmental impact, and broader applicability, marking significant progress in the field of biosensors.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1K. Guo, S. Wustoni, A. Koklu, E. Díaz-Galicia, M. Moser, A. Hama, A A. Alqahtani, A. N. Ahmad, F. S. Alhamlan, M. Shuaib, A. Pain, I. McCulloch, S T. Arold, R. Grünberg, S. Inal, Nat. Biomed. Eng. 2021, 5, 666.
- 2C. Chen, S. Zhao, C. Pan, Y. Zi, F. Wang, C. Yang, Z L. Wang, Nat. Commun. 2022, 13, 1391.
- 3R. Zhang, K. Qian, Adv. Sens. Res. 2023, 2, 2200052.
10.1002/adsr.202200052 Google Scholar
- 4T. Someya, Z. Bao, G. G. Malliaras, Nature 2016, 540, 379.
- 5T R. Ray, J. Choi, A J. Bandodkar, S. Krishnan, P. Gutruf, L. Tian, R. Ghaffari, J A. Rogers, Chem. Rev. 2019, 119, 5461.
- 6J. Kim, A. S. Campbell, B. E.-F. de Ávila, J. Wang, Nat. Biotechnol. 2019, 37, 389.
- 7Y. Ohm, C. Pan, M. J. Ford, X. Huang, J. Liao, C. Majidi, Nat. Electron. 2021, 4, 185.
- 8V. Naresh, N. Lee, Sensors 2021, 21, 1109.
- 9U. Chadha, P. Bhardwaj, R. Agarwal, P. Rawat, R. Agarwal, I. Gupta, M. Panjwani, S. Singh, C. Ahuja, S. K. Selvaraj, M. Banavoth, P. Sonar, B. Badoni, A. Chakravorty, J. Ind. Eng. Chem. 2022, 109, 21.
- 10D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, Hu Tao, A. Islam, Ki J Yu, T-Il Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F G. Omenetto, Y. Huang, T. Coleman, J A. Rogers, Science 2011, 333, 838.
- 11A. Ngo, P. Gandhi, W. G. Miller, J. Appl. Lab. Med. 2017, 1, 410.
- 12R. Liu, Z. L. Wang, K. Fukuda, T. Someya, Nat. Rev. Mater. 2022, 7, 870.
- 13L. Mauler, F. Duffner, W. G. Zeier, J. Leker, Energy Environ. Sci. 2021, 14, 4712.
- 14A. H. de la Iglesia, F. L. Alejano, A. J. L. Rivero, D. H. de la Iglesia, in Int. Conf. on Disruptive Technologies, Tech Ethics and Artificial Intelligence, Springer, Berlin 2023, pp. 271–279.
- 15Y. Zhao, J. Guo, InfoMat 2020, 2, 866.
- 16C. Xu, Y. Song, M. Han, H. Zhang, Microsyst. Nanoeng. 2021, 7, 25.
- 17Y. Song, D. Mukasa, H. Zhang, W. Gao, Acc. Mater. Res. 2021, 2, 184.
- 18L. Molina Arias, J. Iwaniec, M. Iwaniec, Energies 2021, 14, 3367.
10.3390/en14123367 Google Scholar
- 19X. Guo, L. Liu, Z. Zhang, S. Gao, T. He, Q. Shi, C. Lee, J. Micromech. Microeng. 2021, 31, 093002.
- 20G. Rong, Y. Zheng, M. Sawan, Sensors 2021, 21, 3806.
- 21A. Sharma, M. Badea, S. Tiwari, J. L. Marty, Molecules 2021, 26, 748.
- 22T. Yan, C. Guo, C. Wang, K. Zhu, View 2023, 4, 20220059.
- 23J. Zhao, B. Chen, N. Liu, J. Zhou, R. Cheng, Y. Liu, G. Han, IEEE Trans. Electron Devices 2023, 44, 1464
- 24S. Han, W. Sung, T. Y. Kim, S. J. Yang, S. Kim, G. Lee, K. Cho, S. K. Hahn, Nano Energy 2021, 81, 105650.
- 25L. Ferlauto, M. J. I. Airaghi Leccardi, N. A. L. Chenais, S. C. A. Gilliéron, P. Vagni, M. Bevilacqua, T J. Wolfensberger, K. Sivula, D. Ghezzi, Nat. Commun. 2018, 9, 992.
- 26M. Marus, Y. Mukha, H.-T. Wong, T.-L. Chan, A. Smirnov, A. Hubarevich, H. Hu, Nanomaterials 2023, 13, 2650.
- 27K. Park, J. Yi, S-Y. Yoon, S M. Park, J. Kim, H. Shin, S. Biswas, GY. Yoo, S. Moon, J. Kim, M. Oh, A. Wedel, S. Jeong, H. Kim, S. Oh, H. Kang, H. Yang, C. Han, Nat. Photonics 2024, 18, 177.
- 28H. I. Jeong, S. Biswas, S. C. Yoon, S. J. Ko, H. Kim, H. Choi, Adv. Energy Mater. 2021, 11, 2102397.
- 29S. Kim, J. Malik, J. M. Seo, Y. M. Cho, F. Bien, Sci. Rep. 2022, 12, 17395.
- 30C. Wu, A. C. Wang, W. Ding, H. Guo, Z. L. Wang, Adv. Energy Mater. 2019, 9, 1802906.
- 31H. Zou, Y. Zhang, L. Guo, P. Wang, Xu He, G. Dai, H. Zheng, C. Chen, A. C. Wang, C. Xu, Z. L. Wang, Nat. Commun. 2019, 10, 1427.
- 32W.-G. Kim, D.-W. Kim, I.-W. Tcho, J.-K. Kim, M.-S. Kim, Y.-K. Choi, ACS Nano 2021, 15, 258.
- 33S. Pan, Z. Zhang, Friction 2019, 7, 2.
- 34T. Cheng, Q. Gao, Z. L. Wang, Adv. Mater. Technol. 2019, 4, 1800588.
- 35R. Dharmasena, S. Silva, Nano Energy 2019, 62, 530.
- 36G. Jian, S. Zhu, X. Yuan, S. Fu, N. Yang, C. Yan, Xu Wang, C.-P. Wong, NPG Asia Mater. 2024, 16, 12.
- 37Z. Wang, S. Yao, S. Wang, Z. Liu, X. Wan, Q. Hu, Y. Zhao, C. Xiong, L. Li, Chem. Eng. J. 2023, 463, 142427.
- 38S. Han, M. Zou, X. Pu, Y. Lu, Y. Tian, H. Li, Y. Liu, F. Wu, N. Huang, M. Shen, E. Song, D. Wang, View 2023, 4, 20230005.
- 39S. R. Anton, H. A. Sodano, Smart Mater. Struct. 2007, 16, R1.
- 40K. Uchino, in Advanced Piezoelectric Materials: Science and Technology, Elsevier, Amsterdam 2017, pp. 1–92.
- 41M. A. Signore, G. Rescio, C. De Pascali, V. Iacovacci, P. Dario, A. Leone, F. Quaranta, A. Taurino, P. Siciliano, L. Francioso, Sci. Rep. 2019, 9, 17130.
- 42R. Hinchet, H-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, S.-W. Kim, Science 2019, 365, 491.
- 43S. Jo, W. Lee, H. Lee, Adv. Funct. Mater. 2023, 33, 2300027.
- 44S. Yoo, J. Lee, H. Joo, S. H. Sunwoo, S. Kim, D. H. Kim, Adv. Healthcare Mater. 2021, 10, 2100614.
- 45J. Zhang, YJ. Cheng, IEEE Trans. Antennas Propag. 2023, 71, 6617.
- 46B. Rigo, A. Bateman, J. Lee, H. Kim, Y. Lee, L. Romero, Y C. Jang, R. Herbert, W.-H. Yeo, Biosens. Bioelectron. 2023, 241, 115650.
- 47J. Zhang, R. Das, J. Zhao, N. Mirzai, J. Mercer, H. Heidari, Adv. Mater. Technol. 2022, 7, 2101086.
- 48X. Hei, X. Du, Security for Wireless Implantable Medical Devices, Springer, Berlin 2013.
10.1007/978-1-4614-7153-0 Google Scholar
- 49G. Zheng, R. Shankaran, M. A. Orgun, L. Qiao, K. Saleem, IEEE Sens. J. 2016, 17, 562.
- 50T. Denning, A. Borning, B. Friedman, B. T. Gill, T. Kohno, W. H. Maisel, in Proceedings of the SIGCHI Conf. on Human Factors in Computing Systems, ACM, New York 2010, pp. 917–926.
- 51J. E. Ferguson, A. D. Redish, Expert Rev. Med. Devices 2011, 8, 427.
- 52S. R. Khan, S. K. Pavuluri, G. Cummins, M. P. Desmulliez, Sensors 2020, 20, 3487.
- 53W. Gao, Y. Wang, F. Lai, Smart Med. 2022, 1, 20220016.
10.1002/SMMD.20220016 Google Scholar
- 54Z. Lei, W. Gao, W. Zhu, P. Wu, Adv. Funct. Mater. 2022, 32, 2201021.
- 55Y. Jia, Q. Jiang, H. Sun, P. Liu, D. Hu, Y. Pei, W. Liu, X. Crispin, S. Fabiano, Y. Ma, Y. Cao, Adv. Mater. 2021, 33, 2102990.
- 56X. Huang, L. Wang, H. Wang, B. Zhang, X. Wang, R Y. Z. Stening, X. Sheng, L. Yin, Small 2020, 16, 1902827.
- 57Y. Yang, X.-J. Wei, J. Liu, J. Phys. D: Appl. Phys. 2007, 40, 5790.
- 58S. Lakshmi, Int. Trans. Electr. Energy Syst 2021, 31, 1.
- 59W. Zhu, Y. Deng, Y. Wang, S. Shen, R. Gulfam, Energy 2016, 100, 91.
- 60D. Kraemer, L. Hu, A. Muto, X. Chen, G. Chen, M. Chiesa, Appl. Phys. Lett. 2008, 92, 243503.
- 61M. Magno, L. Sigrist, A. Gomez, L. Cavigelli, A. Libri, E. Popovici, L. benini, Sensors 2019, 192747.
- 62K.-T. Park, S-Mi Shin, A S. Tazebay, H.-D. Um, J.-Y. Jung, S.-W. Jee, M.-W. Oh, Su-D Park, B. Yoo, C. Yu, J-Ho Lee, Sci. Rep. 2013, 3, 2123.
- 63H. Zheng, Y. Zi, X. He, H. Guo, Y. Lai, J. Wang, S. Zhang, C. Wu, G. Cheng, Z. Wang, ACS Appl. Mater. Interfaces 2018, 10, 14708.
- 64J. Chung, H. Yong, H. Moon, Q. V. Duong, S. T. Choi, D. Kim, S. Lee, Adv. Sci. 2018, 5, 1801054.
- 65Y. Li, Y. Liu, X. Liu, X. Wang, Q. Li, IEICE Electron. Express 2019, 16, 20190066.
10.1587/elex.16.20190066 Google Scholar
- 66Y. Xie, Z. Zhang, H. Zhou, Z. Wang, Y. Lin, Y. Chen, Yi Lv, Y. Chen, C. Zhang, Adv. Mater. Interfaces 2022, 9, 2200468.
- 67Z. Zhang, T. He, J. Zhao, G. Liu, Z. Wang, C. Zhang, Mater. Today Phys. 2021, 16, 100295.
- 68B. I. Oladapo, Mater. Sci. Eng., R 2024, 157, 100763.
10.1016/j.mser.2023.100763 Google Scholar
- 69K. Song, J. H. Han, H. C. Yang, K. I. Nam, J. Lee, Biosens. Bioelectron. 2017, 92, 364.
- 70A. Iqbal, P. R. Sura, M. Al-Hasan, I. B. Mabrouk, T. A. Denidni, Sci. Rep. 2022, 12, 13689.
- 71T. Janes, in 2021 43rd Annu. Int. Conf. of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, Piscataway, NJ 2021: pp. 1547–1550.