High-Energy Polynitrogen N10 Stabilized on Multi-Walled Carbon Nanotubes
Tianyang Hou
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorKe Guo
State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Jiawei Zhu
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZe Xu
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorXiaopeng Zhang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorKan Zhang
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Ming Lu
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLi Tao
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Yuangang Xu
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorTianyang Hou
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorKe Guo
State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Jiawei Zhu
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZe Xu
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorXiaopeng Zhang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorKan Zhang
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Ming Lu
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLi Tao
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Yuangang Xu
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The synthesis of stable polynitrogen compounds with high-energy density has long been a major challenge. The cyclo-pentazolate anion (cyclo-N5−) is successfully converted into aromatic and structurally symmetric bipentazole (N10) via electrochemical synthesis using highly conductive multi-walled carbon nanotubes (MWCNTs) as the substrate and sodium pentazolate hydrate ([Na(H2O)(N5)]·2H2O) as the raw material. Attenuated total refraction Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and density functional theory calculations confirmed the structure and homogeneous distribution of N10 in the sidewalls of the MWCNTs (named MWCNT-N10-n m). The MWCNT-N10-2.0 m is further used as a catalyst for electrochemical oxygen reduction to synthesize hydrogen peroxide from oxygen with a two-electron selectivity of up to 95%.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202403615-sup-0001-SuppMat.pdf3.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Cacace, G. de Petris, A. Troiani, Science 2002, 295, 480.
- 2Z. Wu, E. M. Benchafia, Z. Iqbal, X. Wang, Angew. Chem., Int. Ed. 2014, 53, 12555.
- 3B. Hirshberg, R. B. Gerber, A. I. Krylov, Nat. Chem. 2014, 6, 52.
- 4D. Laniel, F. Trybel, Y. Yin, T. Fedotenko, S. Khandarkhaeva, A. Aslandukov, G. Aprilis, A. I. Abrikosov, T. Bin Masood, C. Giacobbe, E. Lawrence Bright, K. Glazyrin, M. Hanfland, J. Wright, I. Hotz, I. A. Abrikosov, L. Dubrovinsky, N. Dubrovinskaia, Nat. Chem. 2023, 15, 641.
- 5S. Ninet, Nat. Chem. 2023, 15, 595.
- 6Y. Wang, M. Bykov, I. Chepkasov, A. Samtsevich, E. Bykova, X. Zhang, S. Jiang, E. Greenberg, S. Chariton, V. B. Prakapenka, A. R. Oganov, A. F. Goncharov, Nat. Chem. 2022, 14, 794.
- 7D. L. Bryce, Phys. Chem. Chem. Phys. 2006, 8, 3379.
- 8M. X. Silva, F. T. Silva, B. R. L. Galvão, J. P. Braga, J. C. Belchior, J Mol Model 2018, 24, 196.
- 9B. Hirshberg, R. B. Gerber, Chem. Phys. Lett. 2012, 531, 46.
- 10L. Türker, Z. Anorg. Allg. Chem. 2019, 645, 1118.
- 11K. F. Ferris, R. J. Bartlett, J. Am. Chem. Soc. 1992, 114, 8302.
- 12S. Liu, L. Zhao, M. Yao, M. Miao, B. Liu, Adv. Sci. 2020, 7, 1902320.
- 13M. R. Manaa, Chem. Phys. Lett. 2000, 331, 262.
- 14S. Fau, K. J. Wilson, R. J. Bartlett, J. Phys. Chem. A 2002, 106, 4639.
- 15A. A. Arbab, A. A. Memon, I. A. Sahito, N. Mengal, K. C. Sun, M. Ali, S. H. Jeong, J. Mater. Chem. A 2018, 6, 8307.
- 16Z. Yao, M. Hu, Z. Iqbal, X. Wang, ACS Catal. 2019, 10, 160.
- 17S. V. Bondarchuk, J. Phys. Chem. Lett. 2020, 11, 5544.
- 18Y. Xu, Q. Wang, C. Shen, Q. Lin, P. Wang, M. Lu, Nature 2017, 549, 78.
- 19C. Zhang, C. Sun, B. Hu, C. Yu, M. Lu, Science 2017, 355, 374.
- 20X. Zhang, R. Liu, Y. Zang, G. Liu, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Chem 2016, 52, 5946.
- 21D. U. Lee, M. G. Park, H. W. Park, M. H. Seo, X. Wang, Z. Chen, ChemSusChem 2015, 8, 3129.
- 22E. Haque, A. Zavabeti, N. Uddin, Y. Wang, M. A. Rahim, N. Syed, K. Xu, A. Jannat, F. Haque, B. Zhang, M. A. Shoaib, S. Shamsuddin, M. Nurunnabi, A. I. Minett, J. Ou, A. T. Harris, Chem. Mater. 2020, 32, 1384.
- 23C. Zhang, W. Shen, K. Guo, M. Xiong, J. Zhang, X. Lu, J. Am. Chem. Soc. 2023, 145, 11589.
- 24Y. Jiang, P. Ni, C. Chen, Y. Lu, P. Yang, B. Kong, A. Fisher, X. Wang, Adv. Energy Mater. 2018, 8, 1801909.
- 25Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296.
- 26X. Xiao, T. Wang, J. Bai, F. Li, T. Ma, Y. Chen, ACS Appl. Mater. Interfaces 2018, 10, 42534.
- 27S. Chen, Z. Chen, S. Siahrostami, T. R. Kim, D. Nordlund, D. Sokaras, S. Nowak, J. W. F. To, D. Higgins, R. Sinclair, J. K. Nørskov, T. F. Jaramillo, Z. Bao, ACS Sustainable Chem. Eng. 2017, 6, 311.
- 28L. Han, Y. Sun, S. Li, C. Cheng, C. E. Halbig, P. Feicht, J. L. Hübner, P. Strasser, S. Eigler, ACS Catal. 2019, 9, 1283.
- 29Y. Sa, J. H. Kim, S. H. Joo, Angew. Chem. Int. Ed. 2019, 58, 1100.
- 30Y. Hu, J. Zhang, T. Shen, Z. Li, K. Chen, Y. Lu, J. Zhang, D. Wang, ACS Appl Mater Interfaces 2021, 13, 29551.
- 31Y. Yang, F. He, Y. Shen, X. Chen, H. Mei, S. Liu, Y. Zhang, Chem. Commun. 2017, 53, 9994.
- 32N. Jia, T. Yang, S. Shi, X. Chen, Z. An, Y. Chen, S. Yin, P. Chen, ACS Sustainable Chem. Eng. 2020, 8, 2883.
- 33Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T. F. Jaramillo, J. K. Nørskov, Y. Cui, Nat. Catal. 2018, 1, 156.
- 34Q. Chang, P. Zhang, A. H. B. Mostaghimi, X. Zhao, S. R. Denny, J. H. Lee, H. Gao, Y. Zhang, H. Xin, S. Siahrostami, J. Chen, Z. Chen, Nat. Commun. 2020, 11, 2178.
- 35K. H. Koh, Y. J. Kim, A. H. B. Mostaghim, S. Siahrostami, T. Han, Z. Chen, ACS Mater. Lett. 2022, 4, 320.
- 36Z. Shi, J. Zhang, Z. Liu, H. Wang, D. P. Wilkinson, Electrochim. Acta. 2006, 51, 1905.
- 37M. Dan, R. Zhong, S. Hu, H. Wu, Y. Zhou, Z. Liu, Chem. Catalysis 2022, 2, 1919.