Enhanced Temperature Stability of Pyroelectric Sensing in Multilayer Potassium Sodium Niobate-Based Ceramics with Graded Polarization Rotation
Yumin Zhang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorLanji Wen
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorYuntao Huang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorCorresponding Author
Dechao Meng
Microsystem and Terahertz Research Center & Institute of Electronic Engineering, China Academy of Engineering Physics, Chengdu, 610200 P. R. China
E-mail: [email protected]; [email protected][email protected]
Search for more papers by this authorCorresponding Author
Ting Zheng
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
E-mail: [email protected]; [email protected][email protected]
Search for more papers by this authorCorresponding Author
Jiagang Wu
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
E-mail: [email protected]; [email protected][email protected]
Search for more papers by this authorYumin Zhang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorLanji Wen
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorYuntao Huang
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
Search for more papers by this authorCorresponding Author
Dechao Meng
Microsystem and Terahertz Research Center & Institute of Electronic Engineering, China Academy of Engineering Physics, Chengdu, 610200 P. R. China
E-mail: [email protected]; [email protected][email protected]
Search for more papers by this authorCorresponding Author
Ting Zheng
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
E-mail: [email protected]; [email protected][email protected]
Search for more papers by this authorCorresponding Author
Jiagang Wu
College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 P. R. China
E-mail: [email protected]; [email protected][email protected]
Search for more papers by this authorAbstract
Pyroelectric effect which refers to electrical responses induced by time temperature-dependent fluctuations has received extensive attention, showing promising application prospects for infrared (IR) technology. Although enhanced pyroelectric performances are obtained in potassium sodium niobate-based ceramics at room temperature via multi-symmetries coexistence design, the poor pyroelectric temperature stability is still an urging desire that needs to be resolved. Herin, by constructing multilayer composite ceramics and adjusting the proportion of stacked layers, improved pyroelectric coefficient, and figures of merit (FOMs), as well as enhanced temperature stabilities can be achieved. With a remained high pyroelectric coefficient of 5.45 × 10−4 C m−2°C−1 at room temperature, the pyroelectric parameters almost keep unchanged in the temperature range of 30–100 °C, showing great properties advantages compared with previous reports. The excellent properties can be attributed to the graded polarization rotation states among each lamination induced by successive phase transitions. The novel strategy for achieving stable pyroelectric sensing can further promote the application in the IR sensors field.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202403346-sup-0001-SuppMat.docx11.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan, R. Vaish, Energy Environ. Sci. 2014, 7, 3836.
- 2H. He, X. Lu, E. Hanc, C. Chen, H. Zhang, L. Lu, J. Mater. Chem. C 2020, 8, 1494.
- 3R. Mondal, M. A. M. Hasan, J. M. Baik, Y. Yang, Mater. Today 2023, 66, 273.
- 4D. Zhang, H. Wu, C. R. Bowen, Y. Yang, Small 2021, 17, 2103960.
- 5S. Jachalke, E. Mehner, H. Stöcker, J. Hanzig, M. Sonntag, T. Weigel, T. Leisegang, D. C. Meyer, Appl. Phys. Rev. 2017, 4, 021303.
- 6P. Costa, J. Nunes-Pereira, N. Pereira, N. Castro, S. Gonçalves, S. Lanceros-Mendez, Energy Technol. 2019, 7, 1800852.
- 7R. W. Whatmore, Rep. Prog. Phys. 1986, 49, 1335.
- 8S. B. Lang, D. K. Das-Gupta, Handbook of Advanced Electronic and Photonic Materials and Devices (Ed.: H. Singh Nalwa), Academic Press, Burlington 2001, pp. 1–55.
10.1016/B978-012513745-4/50036-6 Google Scholar
- 9X. Li, S.-G. Lu, X.-Z. Chen, H. Gu, X.-s. Qian, Q. M. Zhang, J. Mater. Chem. C 2013, 1, 23.
- 10J. W. Stewart, J. H. Vella, W. Li, S. Fan, M. H. Mikkelsen, Nat. Mater. 2020, 19, 158.
- 11Z. Liu, T. Lu, X. Dong, G. Wang, Y. Liu, IEEE Trans Sonics Ultrason 2021, 68, 242.
10.1109/TUFFC.2020.3025168 Google Scholar
- 12P. Guggilla, A. K. Batra, J. R. Currie, M. D. Aggarwal, M. A. Alim, R. B. Lal, Mater. Lett. 2006, 60, 1937.
- 13R. W. Whatmore, Ferroelectrics 1991, 118, 241.
- 14S. T. Lau, C. H. Cheng, S. H. Choy, D. M. Lin, K. W. Kwok, H. L. W. Chan, J. Appl. Phys. 2008, 103, 104105.
- 15J. Wu, D. Xiao, J. Zhu, Chem. Rev. 2015, 115, 2559.
- 16J. Wu, Advances in Lead-Free Piezoelectric Materials, Springer, Berlin, Germany 2018.
10.1007/978-981-10-8998-5 Google Scholar
- 17J. Wu, J. Appl. Phys. 2020, 127, 190901.
- 18A. Thakre, A. Kumar, H.-C. Song, D.-Y. Jeong, J. Ryu, Sensors 2019, 19, 2170.
- 19T. Zheng, J. Wu, D. Xiao, J. Zhu, Prog. Mater. Sci. 2018, 98, 552.
- 20J. Zhang, G. Wang, F. Gao, C. Mao, F. Cao, X. Dong, Ceram. Int. 2013, 39, 1971.
- 21L. Wen, X. Wu, J. Yin, Y. Zhang, D. Yang, J. Wu, Small 2024, 2307326.
10.1002/smll.202307326 Google Scholar
- 22M. Shen, K. Liu, G. Zhang, Q. Li, G. Zhang, Q. Zhang, H. Zhang, S. Jiang, Y. Chen, K. Yao, Nat. Commun. 2023, 14, 7907.
- 23X. Liu, Z. Chen, D. Wu, B. Fang, J. Ding, X. Zhao, H. Xu, H. Luo, Jpn. J. Appl. Phys. 2015, 54, 071501.
- 24M.-M. Yang, Z.-D. Luo, Z. Mi, J. Zhao, S. P. E., M. Alexe, Nature 2020, 584, 377.
- 25A. M. Balakt, C. P. Shaw, Q. Zhang, J. Eur. Ceram. Soc. 2017, 37, 1459.
- 26M. Shen, W. Li, M.-Y. Li, H. Liu, J. Xu, S. Qiu, G. Zhang, Z. Lu, H. Li, S. Jiang, J. Eur. Ceram. Soc. 2019, 39, 1810.
- 27X. Lv, J. Zhu, D. Xiao, X.-x. Zhang, J. Wu, Chem. Soc. Rev. 2020, 49, 671.
- 28H. Birol, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 2006, 26, 861.
- 29X. P. Jiang, Y. Chen, K. H. Lam, S. H. Choy, J. Wang, J. Alloys Compd. 2010, 506, 323.
- 30Y. Zhang, X. Feng, F. Li, D. Meng, T. Zheng, J. Wu, Adv. Funct. Mater. 2023, 33, 2306039.
- 31Y. Huang, H. Xue, T. Zheng, J. Wu, J. Am. Ceram. Soc. 2023, 106, 1113.
- 32X. Lv, X. Wang, Y. Ma, X.-x. Zhang, J. Wu, Mater. Sci. Engineering: R: Reports 2024, 159, 100793.
10.1016/j.mser.2024.100793 Google Scholar
- 33Y. Zhang, Y. Yu, N. Zhang, T. Zheng, J. Wu, Adv. Funct. Mater. 2023, 33, 2211439.
- 34T. Zheng, Y. Yu, H. Lei, F. Li, S. Zhang, J. Zhu, J. Wu, Adv. Mater. 2022, 34, 2109175.
- 35K.-i. Kakimoto, K. Akao, Y. Guo, H. Ohsato, R. S. S. Piezoelectric, Jpn J. Appl. Phys. 2005, 44, 7064.
- 36X. Gao, Z. Cheng, Z. Chen, Y. Liu, X. Meng, X. Zhang, J. Wang, Q. Guo, B. Li, H. Sun, Q. Gu, H. Hao, Q. Shen, J. Wu, X. Liao, S. P. Ringer, H. Liu, L. Zhang, W. Chen, F. Li, S. Zhang, Nat. Commun. 2021, 12, 881.
- 37Y. Yu, X. Shi, H. Xue, N. Zhang, T. Zheng, H. Huang, J. Zhu, J. Wu, ACS Appl. Mater. Interfaces 2022, 14, 26949.
- 38L. Wu, T. Zheng, J. Wu, J. Eur. Ceram. Soc. 2024, 44, 205.
- 39J. Lin, J. Qian, G. Ge, Y. Yang, J. Li, X. Wu, G. Li, S. Wang, Y. Liu, J. Zhang, J. Zhai, X. Shi, H. Wu, Nat. Commun. 2024, 15, 2560.
- 40K. Srikanth, S. Patel, R. Vaish, Int. J. Appl. Ceram. Technol. 2018, 15, 546.
- 41A. M. Balakt, C. P. Shaw, Q. Zhang, J. Alloys Compd. 2017, 709, 82.
- 42S. Patel, A. Chauhan, R. Vaish, Solid State Sci. 2016, 52, 10.
- 43L. Hu, B. Fan, Z. Fang, G. Zhang, Q. Zhang, G. Zhang, H. Zhang, S. Jiang, Y. Chen, M. Shen, Acta Mater. 2022, 238, 118194.
- 44K. S. Srikanth, S. Patel, S. Steiner, R. Vaish, Appl. Phys. Lett. 2017, 110, 232901.
- 45K. S. Srikanth, V. P. Singh, R. Vaish, J. Eur. Ceram. Soc. 2017, 37, 3943.
- 46K. S. Srikanth, S. Patel, S. Steiner, R. Vaish, Scripta Materialia. 2018, 146, 146.
- 47H. Tao, H. Wu, Y. Liu, Y. Zhang, J. Wu, F. Li, X. Lyu, C. Zhao, D. Xiao, J. Zhu, S. J. Pennycook, J. Am. Chem. Soc. 2019, 141, 13987.
- 48M. Shen, Y. Qin, Y. Zhang, M. A. Marwat, C. Zhang, W. Wang, M. Li, H. Zhang, G. Zhang, S. Jiang, J. Am. Ceram. Soc. 2019, 102, 3990.