Thiocarbonyl-Based Hole Transport Materials with Enhanced Defect Passivation Ability for Efficient and Stable Perovskite Solar Cells
Junhong Tan
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715 P.R. China
Search for more papers by this authorRong Tang
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorRuiqin Wang
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
Search for more papers by this authorXing Gao
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715 P.R. China
Search for more papers by this authorKaixing Chen
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715 P.R. China
Search for more papers by this authorCorresponding Author
Xiaorui Liu
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fei Wu
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Linna Zhu
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJunhong Tan
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715 P.R. China
Search for more papers by this authorRong Tang
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorRuiqin Wang
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
Search for more papers by this authorXing Gao
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715 P.R. China
Search for more papers by this authorKaixing Chen
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715 P.R. China
Search for more papers by this authorCorresponding Author
Xiaorui Liu
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fei Wu
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Linna Zhu
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energy, School of Materials & Energy, Southwest University, Chongqing, 400715 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Organic hole transporting materials (HTMs) are extensively studied in perovskite solar cells (PSCs). The HTMs directly contact the underlying perovskite material, and they play additional roles apart from hole transporting. Developing organic HTMs with defect passivation function has been proved to be an efficient strategy to construct efficient and stable PSCs. In this work, new organic molecules with thiocarbonyl (C═S) and carbonyl (C═O) functional groups are synthesized and applied as HTMs (named FN-S and FN-O). FN-S with C═S can be facilely obtained from FN-O containing C═O. Notably, the C═S in FN-S results in superior defect passivation ability compared to FN-O. Moreover, FN-S exhibits excellent hole extraction/transport capability. Conventional PSCs using FN-S as HTM show an impressive power conversion efficiency (PCE) of 23.25%, with excellent long-term stability and operational stability. This work indicates that simply converting C═O to C═S is an efficient way to improve the device performance by strengthening the defect passivation functionality.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202402760-sup-0001-SuppMat.docx1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Bae, L. Li, K. Yang, R. Mosurkal, J. Kumar, ACS Appl Energy Mater 2021, 4, 10459.
- 2Z. T. Chang, J. H. Guo, Q. Fu, T. Wang, R. Wang, Y. S. Liu, Sol. RRL 2021, 5, 2100184.
- 3X. Q. Jiang, D. P. Wang, Z. Yu, W. Y. Ma, H. B. Li, X. C. Yang, F. Liu, A. Hagfeldt, L. C. Sun, Adv. Energy Mater. 2019, 9, 1803287.
- 4A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 5J. A. Feng, X. Wang, J. Li, H. M. Liang, W. Wen, E. Alvianto, C. W. Qiu, R. Su, Y. Hou, Nat. Commun. 2023, 14, 5392.
- 6J. P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, A. Hagfeldt, Science 2017, 358, 739.
- 7J. Y. Kim, J. W. Lee, H. S. Jung, H. Shin, N. G. Park, Chem. Rev. 2020, 120, 7867.
- 8W. Wang, R. Guo, X. Xiong, H. Liu, W. Chen, S. Hu, E. Amador, B. Chen, X. Zhang, L. Wang, Mater. Today Phys. 2021, 18, 10037.
- 9W. W. Liu, T. H. Wu, M. C. Liu, W. J. Niu, Y. L. Chueh, Adv. Mater. Interfaces 2019, 6, 1801758.
- 10W. J. Zhao, J. Xu, K. He, Y. Cai, Y. Han, S. M. Yang, S. Zhan, D. P. Wang, Z. K. Liu, S. Z. Liu, Nano-Micro Lett. 2021, 13, 169.
- 11C. Y. Zhang, Y. B. Wang, X. S. Lin, T. H. Wu, Q. F. Han, Y. Q. Zhang, L. Y. Han, J. Mater. Chem. A 2021, 9, 1372.
- 12X. L. Sun, Z. Li, X. Y. Yu, X. Wu, C. Zhong, D. J. Liu, D. Y. Lei, A. K. Y. Jen, Z. A. Li, Z. L. Zhu, Angew. Chem., Int. Ed. 2021, 60, 7227.
- 13J. J. Xue, R. Wang, Y. Yang, Nat. Rev. Mater. 2020, 5, 809.
- 14W. Z. Li, C. L. Zhang, Y. P. Ma, C. Liu, J. D. Fan, Y. H. Mai, R. E. I. Schropp, Energy Environ. Sci. 2018, 11, 286.
- 15F. Zhang, K. Zhu, Adv. Energy Mater. 2020, 10, 1902579.
- 16B. Chen, P. N. Rudd, S. Yang, Y. B. Yuan, J. S. Huang, Chem. Soc. Rev. 2019, 48, 3842.
- 17Y. M. Li, H. X. Wu, W. J. Qi, X. Zhou, J. L. Li, J. Cheng, Y. Zhao, Y. L. Li, X. D. Zhang, Nano Energy 2020, 77, 105237.
- 18F. M. Rombach, S. A. Haque, T. J. Macdonald, Energy Environ. Sci. 2021, 14, 5161.
- 19B. X. M. Zhao, C. Yao, K. C. Gu, T. R. Liu, Y. Xia, Y. L. Loo, Energy Environ. Sci. 2020, 13, 4334.
- 20F. Lamberti, F. Schmitz, W. Chen, Z. B. He, T. Gatti, Sol. RRL 2021, 5, 2100514.
- 21X. D. Ding, H. X. Wang, C. Chen, H. P. Li, Y. Tian, Q. J. Li, C. Wu, L. M. Ding, X. C. Yang, M. Cheng, Chem. Eng. J. 2021, 410, 128328.
- 22R. Wang, J. J. Xue, K. L. Wang, Z. K. Wang, Y. Q. Luo, D. Fenning, G. W. Xu, S. Nuryyeva, T. Y. Huang, Y. P. Zhao, J. L. Yang, J. H. Zhu, M. H. Wang, S. Tan, I. Yavuz, K. N. Houk, Y. Yang, Science 2019, 366, 1509.
- 23W. Chen, Y. Wang, B. Liu, Y. J. Gao, Z. Wu, Y. Q. Shi, Y. M. Tang, K. Yang, Y. J. Zhang, W. P. Sun, X. Y. Feng, F. Laquai, H. Y. Woo, A. B. Djurisic, X. G. Guo, Z. B. He, Sci China Chem 2021, 64, 41.
- 24Y. J. Kang, S. N. Kwon, S. P. Cho, Y. H. Seo, M. J. Choi, S. S. Kim, S. I. Na, ACS Energy Lett. 2020, 5, 2535.
- 25Y. Wang, Z. M. Zhang, Y. J. Lan, Q. Song, M. Z. Li, Y. L. Song, Angew. Chem., Int. Ed. 2021, 60, 8673.
- 26R. Tang, H. T. Liu, Y. N. Xu, K. X. Chen, J. Zhang, P. Zhang, C. Zhong, F. Wu, L. N. Zhu, Adv. Funct. Mater. 2023, 33, 2208859.
- 27N. M. Bingham, Z. Abousalman-Rezvani, K. Collins, P. J. Roth, Polym. Chem. 2022, 13, 2880.
- 28H. H. Li, Y. Tao, Y. B. Zhi, R. F. Chen, H. Li, G. C. Xing, S. Xu, W. Huang, Chem. Eng. J. 2020, 380, 122562.
- 29L. Pauling, J. Am. Chem. Soc. 1932, 54, 3570.
- 30Y. H. Wang, Y. M. Li, X. F. Jiang, Chem Asian J 2018, 13, 2208.
- 31G. Minetto, L. F. Raveglia, A. Sega, M. Taddei, Eur. J. Org. Chem. 2005, 2005, 5277.
- 32F. Wu, Y. H. Shan, J. H. Qiao, C. Zhong, R. Wang, Q. L. Song, L. N. Zhu, ChemSusChem 2017, 10, 3833.
- 33S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 34P. Liu, B. Xu, Y. Hua, M. Cheng, K. Aitola, K. Sveinbjornsson, J. Zhang, G. Boschloo, L. Sun, L. Kloo, J. Power Sources 2017, 344, 11.
- 35Z. A. Zhou, X. F. Zhang, R. Ghadari, X. P. Liu, W. J. Wang, Y. Ding, M. L. Cai, J. H. Pan, S. Y. Dai, Sol. Energy 2021, 221, 323.
- 36P. Zhang, K. X. Chen, X. Gao, J. Zhang, Y. Zeng, R. Tang, F. Wu, C. Zhong, L. N. Zhu, Dyes Pigment 2023, 220, 111693.
- 37J. C. Blakesley, F. A. Castro, W. Kylberg, G. F. A. Dibb, C. Arantes, R. Valaski, M. Cremona, J. S. Kim, J. S. Kim, Org. Electron. 2014, 15, 1263.
- 38H. Zhao, Z. Q. He, M. Xu, C. J. Liang, S. Kumar, Phys. Chem. Chem. Phys. 2016, 18, 8554.
- 39L. Wan, W. X. Zhang, S. Fu, L. J. Chen, Y. M. Wang, Z. Y. Xue, Y. T. Tao, W. J. Zhang, W. J. Song, J. F. Fang, J. Mater. Chem. A 2020, 8, 6517.
- 40Q. L. Niu, L. Zhang, Y. Xu, C. C. Yuan, W. J. Qi, S. Fu, Y. H. Ma, W. J. Zeng, R. D. Xia, Y. G. Min, Polymers 2022, 14, 398.
- 41R. Wang, J. J. Xue, L. Meng, J. W. Lee, Z. P. Zhao, P. Y. Sun, L. Cai, T. Y. Huang, Z. X. Wang, Z. K. Wang, Y. Duan, J. L. Yang, S. Tan, Y. Yuan, Y. Huang, Y. Yang, Joule 2019, 3, 1464.
- 42N. K. Noel, S. N. Habisreutinger, A. Pellaroque, F. Pulvirenti, B. Wenger, F. Zhang, Y. H. Lin, O. G. Reid, J. Leisen, Y. Zhang, S. Barlow, S. R. Marder, A. Kahn, H. J. Snaith, C. B. Arnold, B. P. Rand, Energy Environ. Sci. 2019, 12, 3063.
- 43S. F. Li, L. N. Zhu, Z. P. Kan, Y. Hua, F. Wu, J. Mater. Chem. A 2020, 8, 19555.
- 44X. Q. Jiang, X. Liu, J. F. Zhang, S. Ahmad, D. D. Tu, W. Qin, T. G. Jiu, S. P. Pang, X. Guo, C. Li, J. Mater. Chem. A 2020, 8, 21036.
- 45W. H. Pu, W. Xiao, J. W. Wang, X. W. Li, L. G. Wang, Mater. Des 2021, 198, 109387.
- 46M. Kim, G. H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, H. Lee, S. K. Kwak, J. Y. Kim, D. S. Kim, Joule 2019, 3, 2179.
- 47W. Y. Zhang, Q. S. Li, Z. S. Li, Appl. Surf. Sci. 2021, 563, 150267.
- 48J. B. Zhang, B. Xu, M. B. Johansson, M. Hadadian, J. P. C. Baena, P. Liu, Y. Hua, N. Vlachopoulos, E. M. J. Johansson, G. Boschloo, L. C. Sun, A. Hagfeldt, Adv. Energy Mater. 2016, 6, 1502536.
- 49Q. Wali, M. Aamir, A. Ullah, F. J. Iftikhar, M. E. Khan, J. Akhtar, S. Y. Yang, Chem. Rec. 2022, 22, 1803017.
10.1002/tcr.202100150 Google Scholar
- 50G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344.
- 51I. Konidakis, T. Maksudov, E. Serpetzoglou, G. Kakavelakis, E. Kymakis, E. Stratakis, ACS Appl Energy Mater 2018, 1, 5101.
- 52H. S. Li, J. J. Shi, J. Deng, Z. J. Chen, Y. M. Li, W. Y. Zhao, J. H. Wu, H. J. Wu, Y. H. Luo, D. M. Li, Q. B. Meng, Adv. Mater. 2020, 32, 1907396.
- 53R. Wang, M. Mujahid, Y. Duan, Z. K. Wang, J. J. Xue, Y. Yang, Adv. Funct. Mater. 2019, 29, 1808843.