CeO2-Based Frustrated Lewis Pairs via Defective Engineering: Formation Theory, Site Characterization, and Small Molecule Activation
Run Jing
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350 P.R. China
Search for more papers by this authorXuebin Lu
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350 P.R. China
School of Ecology and Environment, Tibet University, Lhasa, 850000 P.R. China
Search for more papers by this authorJingfei Wang
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350 P.R. China
Search for more papers by this authorJian Xiong
School of Ecology and Environment, Tibet University, Lhasa, 850000 P.R. China
Search for more papers by this authorYina Qiao
School of Environment and Safety Engineering, North University of China, Taiyuan, 030051 P.R. China
Search for more papers by this authorRui Zhang
School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384 P.R. China
Search for more papers by this authorCorresponding Author
Zhihao Yu
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350 P.R. China
E-mail: [email protected]
Search for more papers by this authorRun Jing
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350 P.R. China
Search for more papers by this authorXuebin Lu
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350 P.R. China
School of Ecology and Environment, Tibet University, Lhasa, 850000 P.R. China
Search for more papers by this authorJingfei Wang
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350 P.R. China
Search for more papers by this authorJian Xiong
School of Ecology and Environment, Tibet University, Lhasa, 850000 P.R. China
Search for more papers by this authorYina Qiao
School of Environment and Safety Engineering, North University of China, Taiyuan, 030051 P.R. China
Search for more papers by this authorRui Zhang
School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384 P.R. China
Search for more papers by this authorCorresponding Author
Zhihao Yu
School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350 P.R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Activation of small molecules is considered to be a central concern in the theoretical investigation of environment- and energy-related catalytic conversions. Sub-nanostructured frustrated Lewis pairs (FLPs) have been an emerging research hotspot in recent years due to their advantages in small molecule activation. Although the progress of catalytic applications of FLPs is increasingly reported, the fundamental theories related to the structural formation, site regulation, and catalytic mechanism of FLPs have not yet been fully developed. Given this, it is attempted to demonstrate the underlying theory of FLPs formation, corresponding regulation methods, and its activation mechanism on small molecules using CeO2 as the representative metal oxide. Specifically, this paper presents three fundamental principles for constructing FLPs on CeO2 surfaces, and feasible engineering methods for the regulation of FLPs sites are presented. Furthermore, cases where typical small molecules (e.g., hydrogen, carbon dioxide, methane oxygen, etc.) are activated over FLPs are analyzed. Meanwhile, corresponding future challenges for the development of FLPs-centered theory are presented. The insights presented in this paper may contribute to the theories of FLPs, which can potentially provide inspiration for the development of broader environment- and energy-related catalysis involving small molecule activation.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1A. Willms, H. Schumacher, T. Tabassum, L. Qi, S. L. Scott, P. J. C. Hausoul, M. Rose, ChemCatChem 2018, 10, 1835.
- 2X. Liu, L. He, Y.-M. Liu, Y. Cao, Acc. Chem. Res. 2014, 47, 793.
- 3Ye Wang, Lu Yao, S. Wang, D. Mao, C. Hu, Fuel Process. Technol. 2018, 169, 199.
- 4C.-F. Leung, P.-Yu Ho, Catalysts 2019, 9, 760.
- 5E. Portillo, J. Gandara-Loe, T. R. Reina, L. Pastor-Pérez, Sci. Total Environ. 2023, 857, 159394.
- 6J. Wei, R. Yao, Yu Han, Q. Ge, J. Sun, Chem. Soc. Rev. 2021, 50, 10764.
- 7B. Wang, X. Zhu, F. Huang, Yu Quan, G. Liu, X. Zhang, F. Xiong, C. Huang, M. Ji, H. Li, P. K. Chu, J. Xia, Appl. Catal., B 2023, 325, 122304.
- 8R. Sun, Y. Liao, S.-T. Bai, M. Zheng, C. Zhou, T. Zhang, B. F. Sels, Energy Environ. Sci. 2021, 14, 1247.
- 9T. Cai, H. Sun, J. Qiao, L. Zhu, F. Zhang, J. Zhang, Z. Tang, X. Wei, J. Yang, Q. Yuan, W. Wang, X. Yang, H. Chu, Q. Wang, C. You, H. Ma, Y. Sun, Y. Li, C. Li, H. Jiang, Q. Wang, Y. Ma, Science 2021, 373, 1523.
- 10L. Zhang, M. Zhou, A. Wang, T. Zhang, Chem. Rev. 2020, 120, 683.
- 11D. R. Aireddy, K. Ding, ACS Catal. 2022, 12, 4707.
- 12J. Guo, R. Song, Z. Li, D. Pan, H. Xie, Y. Ba, M. Xie, S. Fan, X. Yang, H. Zhang, H. Yu, S. Zhang, J. Du, Le He, Lu Wang, Adv. Energy Sustain. Res. 2022, 3, 2200106.
- 13M. Younas, L. Loong Kong, M. J. K. Bashir, H. Nadeem, A. Shehzad, S. Sethupathi, Energy Fuels 2016, 30, 8815.
- 14S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, Fuel 2016, 166, 276.
- 15M. Aresta, A. Dibenedetto, A. Angelini, J. CO2 Util. 2013, 3–4, 65.
- 16M. Cai, J. Wen, W. Chu, X. Cheng, Z. Li, J. Nat. Gas Chem. 2011, 20, 318.
- 17M. D. Garba, M. Usman, S. Khan, F. Shehzad, A. Galadima, M. F. Ehsan, A. S. Ghanem, M. Humayun, J. Environ. Chem. Eng. 2021, 9, 104756.
- 18G. C. Welch, R. R. S. Juan, J. D. Masuda, D. W. Stephan, Science 2006, 314, 1124.
- 19J. S. J. Mccahill, G. C. Welch, D. W. Stephan, Angew. Chem., Int. Ed. 2007, 46, 4968.
- 20A. J. P. Cardenas, Y. Hasegawa, G. Kehr, T. H. Warren, G. Erker, Coord. Chem. Rev. 2016, 306, 468.
- 21F.-G. Fontaine, M.-A. Courtemanche, M.-A. Légaré, É. Rochette, Coord. Chem. Rev. 2017, 334, 124.
- 22G. Kehr, G. Erker, Chem. Rec. 2017, 17, 803.
- 23D. W. Stephan, G. Erker, Angew. Chem., Int. Ed. 2010, 49, 46.
- 24J. Paradies, Angew. Chem., Int. Ed. 2014, 53, 3552.
- 25D. W. Stephan, Science 2016, 354, aaf7229.
- 26R. Schlögl, Angew. Chem., Int. Ed. 2015, 54, 3465.
- 27L. B. Hoch, T. E. Wood, P. G. O'brien, K. Liao, L. M. Reyes, C. A. Mims, G. A. Ozin, Adv. Sci. 2014, 1, 1400013.
- 28R. Wischert, C. Copéret, F. Delbecq, P. Sautet, Angew. Chem., Int. Ed. 2011, 50, 3202.
- 29M. Ghoussoub, S. Yadav, K. K. Ghuman, G. A. Ozin, C. V. Singh, ACS Catal. 2016, 6, 7109.
- 30S. Zhang, Z.-Q. Huang, Y. Ma, W. Gao, J. Li, F. Cao, L. Li, C.-R. Chang, Y. Qu, Nat. Commun. 2017, 8, 15266.
- 31Z.-Q. Huang, Li-P Liu, S. Qi, S. Zhang, Y. Qu, C.-R. Chang, ACS Catal. 2018, 8, 546.
- 32J. Wang, X. Zhao, N. Lei, L. Li, L. Zhang, S. Xu, S. Miao, X. Pan, A. Wang, T. Zhang, ChemSusChem 2016, 9, 784.
- 33S. Zhang, Z.-Q. Huang, X. Chen, J. Gan, X. Duan, B. Yang, C.-R. Chang, Y. Qu, J. Catal. 2019, 372, 142.
- 34in Frustrated Lewis Pairs, (Eds. J. Chris Slootweg, A. R. Jupp), Springer International Publishing, Cham, 2021.
10.1007/978-3-030-58888-5 Google Scholar
- 35T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev. 2016, 116, 5987.
- 36D. R. Mullins, Surf. Sci. Rep. 2015, 70, 42.
- 37J. Paier, C. Penschke, J. Sauer, Chem. Rev. 2013, 113, 3949.
- 38Y. Zhang, S. Zhao, J. Feng, S. Song, W. Shi, D. Wang, H. Zhang, Chem 2021, 7, 2022.
- 39S. Turner, S. Lazar, B. Freitag, R. Egoavil, J. Verbeeck, S. Put, Y. Strauven, G. Van Tendeloo, Nanoscale 2011, 3, 3385.
- 40X. Hao, A. Yoko, C. Chen, K. Inoue, M. Saito, G. Seong, S. Takami, T. Adschiri, Y. Ikuhara, Small 2018, 14, 1802915.
- 41M. Sajid, G. Kehr, T. Wiegand, H. Eckert, C. Schwickert, R. Pöttgen, A. J. P. Cardenas, T. H. Warren, R. Fröhlich, C. G. Daniliuc, G. Erker, J. Am. Chem. Soc. 2013, 135, 8882.
- 42T. Wiegand, M. Siedow, H. Eckert, G. Kehr, G. Erker, Isr. J. Chem. 2015, 55, 150.
- 43A. A. Malär, Q. Sun, J. Zehnder, G. Kehr, G. Erker, T. Wiegand, Phys. Chem. Chem. Phys. 2022, 24, 7768.
- 44R. Knitsch, M. Brinkkötter, T. Wiegand, G. Kehr, G. Erker, M. R. Hansen, H. Eckert, Molecules 2020, 25, 1400.
- 45D. Galvan, L. M. De Aguiar, E. Bona, F. Marini, M. H. M. Killner, Anal. Chim. Acta 2023, 1273, 341495.
- 46N. J. Rankin, D. Preiss, P. Welsh, K. E. V. Burgess, S. M. Nelson, D. A. Lawlor, N. Sattar, Atherosclerosis 2014, 237, 287.
- 47N. Aslam, M. Pfender, P. Neumann, R. Reuter, A. Zappe, F. Fávaro De Oliveira, A. Denisenko, H. Sumiya, S. Onoda, J. Isoya, J. Wrachtrup, Science 2017, 357, 67.
- 48B. Blümich, TrAC, Trends Anal. Chem. 2016, 83, 2.
- 49K. Mentoor, L. Twigge, J. W. H. Niemantsverdriet, J. C. Swarts, E. Erasmus, Inorg. Chem. 2021, 60, 55.
- 50Y.-K. Peng, B. Keeling, Y. Li, J. Zheng, T. Chen, H.-L. Chou, T. J. Puchtler, R. A. Taylor, S. C. E. Tsang, Chem. Commun. 2019, 55, 4415.
- 51W. Liu, Y. Chen, H. Qi, L. Zhang, W. Yan, X. Liu, X. Yang, S. Miao, W. Wang, C. Liu, A. Wang, J. Li, T. Zhang, Angew. Chem., Int. Ed. 2018, 57, 7071.
- 52D. Salusso, G. Grillo, M. Manzoli, M. Signorile, S. Zafeiratos, M. Barreau, A. Damin, V. Crocellà, G. Cravotto, S. Bordiga, ACS Appl. Mater. Interfaces 2023, 15, 15396.
- 53S. Zhang, Z. Xia, Y. Zou, F. Cao, Y. Liu, Y. Ma, Y. Qu, J. Am. Chem. Soc. 2019, 141, 11353.
- 54H. Wang, W. Zhang, L. Lu, D. Liu, D. Liu, T. Li, S. Yan, S. Zhao, Z. Zou, Appl. Catal., B 2021, 283, 119639.
- 55G. Xu, Y. Lei, K. Wu, R. Lv, J. Li, X. Sun, W. Cai, Int. J. Hydrogen Energy 2023, 48, 5953.
- 56J. Guo, R. Song, Z. Li, D. Pan, H. Xie, Y. Ba, M. Xie, S. Fan, X. Yang, H. Zhang, H. Yu, S. Zhang, J. Du, L. He, L. Wang, Adv. Energy Sustain. Res. 2022, 3, 2200106.
- 57Z. Chen, Y. Ye, X. Feng, Y. Wang, X. Han, Y. Zhu, S. Wu, S. Wang, W. Yang, L. Wang, J. Zhang, Nat. Commun. 2023, 14, 2000.
- 58Y. Dong, K. K. Ghuman, R. Popescu, P. N. Duchesne, W. Zhou, J. Y. Y. Loh, F. M. Ali, J. Jia, D. Wang, X. Mu, C. Kübel, L. Wang, L. He, M. Ghoussoub, Q. Wang, T. E. Wood, L. M. Reyes, P. Zhang, N. P. Kherani, C. V. Singh, G. A. Ozin, Adv. Sci. 2018, 5, 1700732.
- 59L. Li, W. Liu, R. Chen, S. Shang, X. Zhang, H. Wang, H. Zhang, B. Ye, Y. Xie, Angew. Chem., Int. Ed. 2022, 61, 202214490.
- 60Z. Zhang, Z.-Q. Wang, Z. Li, W.-B. Zheng, L. Fan, J. Zhang, Y.-M Hu, M.-F. Luo, X.-P. Wu, X.-Q. Gong, W. Huang, J.-Q Lu, ACS Catal. 2020, 10, 14560.
- 61X. Liang, X. Wang, X. Zhang, S. Lin, M. Ji, M. Wang, ACS Catal. 2023, 13, 6214.
- 62G. Vilé, B. Bridier, J. Wichert, J. Pérez-Ramírez, Angew. Chem., Int. Ed. 2012, 51, 8620.
- 63C. Riley, S. Zhou, D. Kunwar, A. De La Riva, E. Peterson, R. Payne, L. Gao, S. Lin, H. Guo, A. Datye, J. Am. Chem. Soc. 2018, 140, 12964.
- 64K.-I. Fukui, Y. Namai, Y. Iwasawa, Appl. Surf. Sci. 2002, 188, 252.
- 65F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei, Science 2005, 309, 752.
- 66Z.-Q. Huang, T. Zhang, C.-R. Chang, J. Li, ACS Catal. 2019, 9, 5523.
- 67A. Gupta, U. V. Waghmare, M. S. Hegde, Chem. Mater. 2010, 22, 5184.
- 68Y. Chen, Y. Li, W. Chen, W. W. Xu, Z.-K. Han, A. Waheed, Z. Ye, G. Li, A. Baiker, Nano Res. 2022, 15, 1366.
- 69Y. Chen, H. Wang, Z. Qin, S. Tian, Z. Ye, L. Ye, H. Abroshan, G. Li, Green Chem. 2019, 21, 4642.
- 70Y. Zhao, A. Jalal, A. Uzun, ACS Catal. 2021, 11, 8116.
- 71S. Zhang, C. Zhao, Y. Liu, W. Li, J. Wang, G. Wang, Y. Zhang, H. Zhang, H. Zhao, Chem. Commun. 2019, 55, 2952.
- 72S. Zhou, L. Gao, F. Wei, S. Lin, H. Guo, J. Catal. 2019, 375, 410.
- 73S. Zhou, Q. Wan, S. Lin, H. Guo, Phys. Chem. Chem. Phys. 2022, 24, 11295.
- 74M. Barreau, D. Salusso, J. Li, J. Zhang, E. Borfecchia, K. Sobczak, L. Braglia, J.-J. Gallet, P. Torelli, H. Guo, S. Lin, S. Zafeiratos, Angew. Chem., Int. Ed. 2023, 62, 202302087.
- 75J. Zheng, S. Li, Y. Zhang, P. Zheng, X. Hu, Y. Fang, R. Duan, Q. Chen, J. Mater. Chem. C 2023, 11, 7320.
- 76Y. Zou, Z. Xia, Y. Wang, Y. Liu, S. Zhang, Y. Qu, Chem. Commun. 2023, 59, 11855.
- 77X. Yan, B. Gao, X. Zheng, M. Cheng, N. Zhou, X. Liu, L. Du, F. Yuan, J. Wang, X. Cui, G. Zhang, W. Kong, Q. Xu, Appl. Catal., B 2024, 343, 123484.
- 78W. Li, J. Gan, Y. Liu, Y. Zou, S. Zhang, Y. Qu, Angew. Chem., Int. Ed. 2023, 62, 202305661.
- 79T. Ban, X.-Y Yu, H.-Z. Kang, Z.-Q. Huang, J. Li, C.-R. Chang, ACS Catal. 2023, 13, 1299.
- 80S. Zhang, Y. Liu, M. Zhang, Y. Ma, J. Hu, Y. Qu, Nat. Commun. 2022, 13, 5527.
- 81D. R. Aireddy, K. Ding, ACS Catal. 2022, 12, 4707.
- 82H. Metiu, S. Chrétien, Z. Hu, B. Li, X. Sun, J. Phys. Chem. C 2012, 116, 10439.
- 83E. W. Mcfarland, H. Metiu, Chem. Rev. 2013, 113, 4391.
- 84G. Vilé, B. Bridier, J. Wichert, J. Pérez-Ramírez, Angew. Chem., Int. Ed. 2012, 124, 8748.
10.1002/ange.201203675 Google Scholar
- 85Z. Wu, Y. Cheng, F. Tao, L. Daemen, G. S. Foo, L. Nguyen, X. Zhang, A. Beste, A. J. Ramirez-Cuesta, J. Am. Chem. Soc. 2017, 139, 9721.
- 86J. Moon, Y. Cheng, L. L. Daemen, M. Li, F. Polo-Garzon, A. J. Ramirez-Cuesta, Z. Wu, ACS Catal. 2020, 10, 5278.
- 87H. Chen, C. Xiong, J. Moon, A. S. Ivanov, W. Lin, T. Wang, J. Fu, D.-E. Jiang, Z. Wu, Z. Yang, S. Dai, J. Am. Chem. Soc. 2022, 144, 10688.
- 88G. Eros, K. Nagy, H. Mehdi, I. Pápai, P. Nagy, P. Király, G. Tárkányi, T. Soós, Chem. Eur. J. 2012, 18, 574.
- 89J. Jia, C. Qian, Y. Dong, Y. F. Li, H. Wang, M. Ghoussoub, K. T. Butler, A. Walsh, G. A. Ozin, Chem. Soc. Rev. 2017, 46, 4631.
- 90Y. Xie, J. Chen, X. Wu, J. Wen, R. Zhao, Z. Li, G. Tian, Q. Zhang, P. Ning, J. Hao, ACS Catal. 2022, 12, 10587.
- 91C. Wang, N. Xu, K. Huang, B. Liu, P. Zhang, G. Yang, H. Guo, P. Bai, S. Mintova, Chem. Eng. J. 2023, 466, 143136.
- 92W.-F. Kuan, W.-Y. Yu, F.-Y. Tu, C.-H. Chung, Y.-C Chang, M. M. Lin, T.-H. Yu, L.-J Chen, Chem. Eng. J. 2022, 430, 132941.
- 93P. Tyagi, D. Singh, N. Malik, S. Kumar, R. Singh Malik, Mater. Today 2023, 65, 133.
- 94W. Li, J. Gan, Y. Liu, Y. Zou, S. Zhang, Y. Qu, Angew. Chem., Int. Ed. 2023, 62, 202305661.
- 95T. Ban, X.-Y Yu, H.-Z. Kang, H.-X. Zhang, X. Gao, Z.-Q. Huang, C.-R. Chang, J. Catal. 2022, 408, 206.
- 96J. Li, Z. Xia, Q. Xue, M. Zhang, S. Zhang, H. Xiao, Y. Ma, Y. Qu, Small 2021, 17, 2103018
- 97H. Bai, F. Wang, Q. Ding, W. Xie, H. Li, G. Zheng, W. Fan, Inorg. Chem. 2023, 62, 2394.
- 98Y. Zou, M. Zhang, Y. Liu, Y. Ma, S. Zhang, Y. Qu, J. Catal. 2022, 410, 54.
- 99K. Xiang, Z. Xu, T. Qu, Z. Tian, Y. Zhang, Y. Wang, M. Xie, X. Guo, W. Ding, X. Guo, Chem. Commun. 2017, 53, 12410.
- 100M. Sun, W. Li, B. Zhang, G. Cheng, B. Lan, F. Ye, Y. Zheng, X. Cheng, L. Yu, Chem. Eng. J. 2018, 331, 626.
- 101G. Ou, Y. Xu, B. Wen, R. Lin, B. Ge, Y. Tang, Y. Liang, C. Yang, K. Huang, D. Zu, R. Yu, W. Chen, J. Li, H. Wu, L.-M Liu, Y. Li, Nat. Commun. 2018, 9, 1302.
- 102A. Sinhamahapatra, J.-P. Jeon, J. Kang, B. Han, J.-S. Yu, Sci. Rep. 2016, 6, 27218.
- 103Z. Xiao, Y. Wang, Y.-C Huang, Z. Wei, C.-L. Dong, J. Ma, S. Shen, Y. Li, S. Wang, Energy Environ. Sci. 2017, 10, 2563.
- 104J. Xu, W. Dong, C. Song, Y. Tang, W. Zhao, Z. Hong, F. Huang, J. Mater. Chem. A 2016, 4, 15698.
- 105P. Wang, J. Zhao, Q. Zhao, X. Ma, X. Du, X. Hao, B. Tang, A. Abudula, G. Guan, J. Colloid Interface Sci. 2022, 607, 100.
- 106G. Wang, Y. Yang, Y. Ling, H. Wang, X. Lu, Y.-C. Pu, J. Z. Zhang, Y. Tong, Y. Li, J. Mater. Chem. A 2016, 4, 2849.
- 107Z. Zhang, M. N. Hedhili, H. Zhu, P. Wang, Phys. Chem. Chem. Phys. 2013, 15, 15637.
- 108Q. Deng, R. Zhou, Y.-C. Zhang, X. Li, J. Li, S. Tu, G. Sheng, J. Wang, Z. Zeng, T. Yoskamtorn, S. C. Edman Tsang, Angew. Chem., Int. Ed. 2023, 62, 202211461.