Adaptive Laboratory Evolution of Probiotics toward Oxidative Stress Using a Microfluidic-Based Platform
Ann V. Nguyen
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853 USA
Search for more papers by this authorMohammad Yaghoobi
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853 USA
Search for more papers by this authorShiying Zhang
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, NY, 14853 USA
Search for more papers by this authorPeilong Li
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853 USA
Search for more papers by this authorQike Li
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853 USA
Search for more papers by this authorBelgin Dogan
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, NY, 14853 USA
Search for more papers by this authorGianna P. Ahnrud
DEVCOM Soldier Center, Soldier Sustainment Directorate, Combat Feeding Division, Food Protection & Innovative Packaging Team, Natick, MA, 01760 USA
Search for more papers by this authorGenevieve Flock
DEVCOM Soldier Center, Soldier Sustainment Directorate, Combat Feeding Division, Food Protection & Innovative Packaging Team, Natick, MA, 01760 USA
Search for more papers by this authorPatrick Marek
DEVCOM Soldier Center, Soldier Sustainment Directorate, Combat Feeding Division, Food Protection & Innovative Packaging Team, Natick, MA, 01760 USA
Search for more papers by this authorKenneth W. Simpson
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, NY, 14853 USA
Search for more papers by this authorCorresponding Author
Alireza Abbaspourrad
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853 USA
E-mail: [email protected]
Search for more papers by this authorAnn V. Nguyen
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853 USA
Search for more papers by this authorMohammad Yaghoobi
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853 USA
Search for more papers by this authorShiying Zhang
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, NY, 14853 USA
Search for more papers by this authorPeilong Li
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853 USA
Search for more papers by this authorQike Li
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853 USA
Search for more papers by this authorBelgin Dogan
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, NY, 14853 USA
Search for more papers by this authorGianna P. Ahnrud
DEVCOM Soldier Center, Soldier Sustainment Directorate, Combat Feeding Division, Food Protection & Innovative Packaging Team, Natick, MA, 01760 USA
Search for more papers by this authorGenevieve Flock
DEVCOM Soldier Center, Soldier Sustainment Directorate, Combat Feeding Division, Food Protection & Innovative Packaging Team, Natick, MA, 01760 USA
Search for more papers by this authorPatrick Marek
DEVCOM Soldier Center, Soldier Sustainment Directorate, Combat Feeding Division, Food Protection & Innovative Packaging Team, Natick, MA, 01760 USA
Search for more papers by this authorKenneth W. Simpson
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, NY, 14853 USA
Search for more papers by this authorCorresponding Author
Alireza Abbaspourrad
Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
Adaptive laboratory evolution (ALE) can be used to make bacteria less susceptible to oxidative stress. An alternative to large batch scale ALE cultures is to use microfluidic platforms, which are often more economical and more efficient. Microfluidic ALE platforms have shown promise, but many have suffered from subpar cell passaging mechanisms and poor spatial definition. A new approach is presented using a microfluidic Evolution on a Chip (EVoc) design which progressively drives microbial cells from areas of lower H2O2 concentration to areas of higher concentration. Prolonged exposure, up to 72 h, revealed the survival of adaptive strains of Lacticaseibacillus rhamnosus GG, a beneficial probiotic often included in food products. After performing ALE on this microfluidic platform, the bacteria persisted under high H2O2 concentrations in repeated trials. After two progressive exposures, the ability of L. rhamnosus to grow in the presence of H2O2 increased from 1 mm H2O2 after a lag time of 31 h to 1 mm after 21 h, 2 mm after 28 h, and 3 mm after 42 h. The adaptive strains have different morphology, and gene expression compared to wild type, and genome sequencing revealed a potentially meaningful single nucleotide mutation in the protein omega-amidase.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202306974-sup-0001-SuppMat.pdf571.5 KB | Supporting Information |
smll202306974-sup-0002-MovieS1.mp44.5 MB | Supplemental Movie 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Amaretti, M. Di Nunzio, A. Pompei, S. Raimondi, M. Rossi, A. Bordoni, Appl. Microbiol. Biotechnol. 2013, 97, 809.
- 2T. Feng, J. Wang, Gut Microbes 2020, 12, 1801944.
- 3V. Mozhayskiy, I. Tagkopoulos, Integr. Biol. 2013, 5, 262.
- 4J. Zhang, C. Wu, G. Du, J. Chen, Biotechnol. Bioprocess Eng. 2012, 17, 283.
- 5J. Bommasamudram, P. Kumar, S. Kapur, D. Sharma, S. Devappa, Probiotics Antimicrob. Proteins 2022, 15, 832.
- 6Y. W. Kwon, J.-H. Bae, S.-A. Kim, N. S. Han, Frontiers in Microbiology 2018, 9, 2781.
- 7B. A. Nyabako, H. Fang, F. Cui, K. Liu, T. Tao, X. Zan, W. Sun, Appl. Biochem. Biotechnol. 2020, 191, 1499.
- 8N. R. Ratib, F. Seidl, I. M. Ehrenreich, S. E. Finkel, MBio 2021, 12, 10.
10.1128/mBio.03337-20 Google Scholar
- 9D. J. Sexton, M. Schuster, Nat. Commun. 2017, 8, 230.
- 10A. Wentzel, H. Sletta, S. Consortium, T. E. Ellingsen, P. Bruheim, Metabolites 2012, 2, 178.
- 11O. Scheler, W. Postek, P. Garstecki, Curr. Opin. Biotechnol. 2019, 55, 60.
- 12S. M. Bjork, H. N. Joensson, Curr. Opin. Biotechnol. 2019, 55, 95.
- 13A. V. Nguyen, M. Azizi, M. Yaghoobi, B. Dogan, S. Zhang, K. W. Simpson, A. Abbaspourrad, Anal. Chem. 2021, 93, 5789.
- 14A. V. Nguyen, A. Y. Shourabi, M. Yaghoobi, S. Zhang, K. W. Simpson, A. Abbaspourrad, PLoS One 2022, 17, 0272294.
10.1371/journal.pone.0272294 Google Scholar
- 15A. V. Nguyen, M. Yaghoobi, M. Azizi, M. Davaritouchaee, K. W. Simpson, A. Abbaspourrad, Commun. Eng. 2023, 2, 15.
10.1038/s44172-023-00064-5 Google Scholar
- 16J. Deng, L. Zhou, R. A. Sanford, L. A. Shechtman, Y. Dong, R. E. Alcalde, M. Sivaguru, G. A. Fried, C. J. Werth, B. W. Fouke, Environ. Sci. Technol. 2019, 53, 7996.
- 17Q. Zhang, G. Lambert, D. Liao, H. Kim, K. Robin, C.-K. Tung, N. Pourmand, R. H. Austin, Science 2011, 333, 1764.
- 18A. E. Zoheir, G. P. Späth, C. M. Niemeyer, K. S. Rabe, Small 2021, 17, 2007166.
- 19K. Liu, H. Fang, F. Cui, B. A. Nyabako, T. Tao, X. Zan, H. Chen, W. Sun, Appl. Microbiol. Biotechnol. 2020, 104, 6363.
- 20X. Peng, A. Ed-Dra, Y. Song, M. Elbediwi, R. B. Nambiar, X. Zhou, M. Yue, Front. Immunol. 2022, 13, 973224.
- 21M. I. Petrova, G. Reid, J. A. Ter Haar, Trends Microbiol. 2021, 29, 747.
- 22L. Huang, Int. J. Food Microbiol. 2014, 171, 100.
- 23A. Zulueta, M. J. Esteve, A. Frígola, Food Chem. 2009, 114, 310.
- 24K. M. Schaich, X. Tian, J. Xie, J. Funct. Foods 2015, 14, 111.
- 25 Google C, https://colab.research.google.com/drive/1RaFrHrgFpWwWQ6t39dHTmZZ9zTFql5bc#scrollTo=tuSNCBZkPe80, (accessed: January, 2024).
- 26 Mohammad Yaghoobi; 2022; hydraulic network solver; github, https://doi.org/10.5281/zenodo.6989769.
10.5281/zenodo.6989769 Google Scholar
- 27H. Zhang, J. Xu, Q. Chen, H. Wang, B. Kong, Foods 2021, 10, 1203.
- 28M. Mirdita, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov, M. Steinegger, Nat. Methods 2022, 19, 679.
- 29A. J. L. Cooper, T. Kuhara, Metab. Brain Dis. 2014, 29, 991.
- 30S. Jaisson, M. Veiga-Da-Cunha, E. Van Schaftingen, Biochimie 2009, 91, 1066.
- 31A. Peracchi, M. Veiga-Da-Cunha, T. Kuhara, K. W. Ellens, N. Paczia, V. Stroobant, A. K. Seliga, S. Marlaire, S. Jaisson, G. T. Bommer, J. Sun, K. Huebner, C. L. Linster, A. J. L. Cooper, E. Van Schaftingen, Proc. Natl. Acad. Sci. USA 2017, 114, E3233.
- 32C.-H. Ng, S.-X. Tan, G. G. Perrone, G. W. Thorpe, V. J. Higgins, I. W. Dawes, Free Radicals Biol. Med. 2008, 44, 1131.
- 33Y. Xu, S. Wu, P. Wang, L. Wei, H. Li, J. Proteomics 2022, 265, 104663.
- 34R. G. Ianniello, J. Zheng, T. Zotta, A. Ricciardi, M. G. Gänzle, J. Appl. Microbiol. 2015, 119, 763.
- 35J. Aakko, B. Sánchez, M. Gueimonde, S. Salminen, J. Appl. Microbiol. 2014, 117, 239.
- 36T. Zotta, A. Guidone, R. G. Ianniello, E. Parente, A. Ricciardi, J. Appl. Microbiol. 2013, 115, 848.
- 37L. M. Serrano, D. Molenaar, M. Wels, B. Teusink, P. A. Bron, W. M. De Vos, E. J. Smid, Microb. Cell Fact. 2007, 6, 29.
- 38Y. Hua, B. Yang, J. Tang, Z. Ma, Q. Gao, M. Zhao, Carbohydr. Polym. 2012, 87, 343.
- 39F. Liu, C. Ma, D. J. Mcclements, Y. Gao, Food Hydrocolloids 2017, 63, 625.
- 40O. Ronneberger, P. Fischer, T. Brox, in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, (Eds: N. Navab, J. Hornegger, W. Wells, A. Frangi), Proceedings, Part III 18, Springer, Cham 2015, pp. 234–241.
- 41S. J. Reichler, N. H. Martin, R. L. Evanowski, J. Kovac, M. Wiedmann, R. H. Orsi, J. Dairy Sci. 2019, 102, 5979.
- 42H. Li, arXiv preprint arXiv:1303.3997 2013.
- 43H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, Bioinformatics 2009, 25, 2078.
- 44H. Li, Bioinformatics 2011, 27, 2987.
- 45J. T. Robinson, Nat. Biotechnol 2011, 29, 24.
- 46A. R. Quinlan, I. M. Hall, Bioinformatics 2010, 26, 841.