GO-PEG Represses the Progression of Liver Inflammation via Regulating the M1/M2 Polarization of Kupffer Cells
Xiaomeng Ding
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Search for more papers by this authorYanting Pang
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Search for more papers by this authorQing Liu
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Search for more papers by this authorHaopeng Zhang
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Search for more papers by this authorJiawei Wu
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Search for more papers by this authorJialin Lei
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Search for more papers by this authorCorresponding Author
Ting Zhang
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009 China
E-mail: [email protected]
Search for more papers by this authorXiaomeng Ding
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Search for more papers by this authorYanting Pang
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Search for more papers by this authorQing Liu
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Search for more papers by this authorHaopeng Zhang
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Search for more papers by this authorJiawei Wu
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Search for more papers by this authorJialin Lei
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Search for more papers by this authorCorresponding Author
Ting Zhang
Ministry of Education Key Laboratory of Environmental Medicine Engineering, School of Public Health, Southeast University, Nanjing, 210009 China
Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009 China
E-mail: [email protected]
Search for more papers by this authorAbstract
As a highly promising nanomaterial, exploring the impact of the liver, a vital organ, stands out as a crucial focus in the examination of its biological effects. Kupffer cells (KCs) are one of the first immune cells to contact with exotic-substances in liver. Therefore, this study investigates the immunomodulatory effects and mechanisms of polyethylene glycol-modified graphene oxide (GO-PEG) on KCs. Initial RNA-seq and KEGG pathway analyses reveal the inhibition of the TOLL-like receptor, TNF-α and NOD-like receptor pathways in continually stimulated KCs exposed to GO-PEG. Subsequent biological experiments validate that a 48-hour exposure to GO-PEG alleviates LPS-induced KCs immune activation, characterized by a shift in polarization from M1 to M2. The underlying mechanism involves the absorption of double-stranded RNA/single-stranded RNA, inhibiting the activation of TLR3 and TLR7 in KCs. Employing a Kupffer/AML12 cell co-culture model and animal studies, it is observed that GO-PEG indirectly inhibit oxidative stress, mitochondrial dysfunction, and apoptosis in AML12 cells, partially mitigating systemic inflammation and preserving liver tissue/function. This effect is attributed to the paracrine interaction between KCs and hepatocytes. These findings suggest a meaningful and effective strategy for treating liver inflammation, particularly when combined with anti-inflammatory drugs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202306483-sup-0001-SuppMat.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Chen, X. Tang, B. Jia, C. Chao, Y. Wei, J. Hou, L. Dong, X. Deng, T.-H. Xiao, K. Goda, L. Guo, Nat. Mater. 2022, 21, 1121.
- 2G. Bai, D. Gao, Z. Liu, X. Zhou, J. Wang, Nature 2019, 576, 437.
- 3G. Di Mauro, R. Amoriello, N. Lozano, A. Carnasciali, D. Guasti, M. Becucci, G. Cellot, K. Kostarelos, C. Ballerini, L. Ballerini, ACS Nano 2023, 17, 1965.
- 4T. Huang, Q. Zhang, J. Yi, R. Wang, Z. Zhang, P. Luo, R. Zeng, Y. Wang, M. Tu, Small 2023, 19, e2301749.
- 5D. Shi, D. Beasock, A. Fessler, J. Szebeni, J. Y. Ljubimova, K. A. Afonin, M. A. Dobrovolskaia, Adv. Drug Deliv. Rev. 2022, 180, 114079.
- 6K. Yang, J. Wan, S. Zhang, Y. Zhang, S.-T. Lee, Z. Liu, ACS Nano 2011, 5, 516.
- 7M. Cicuéndez, M. Fernandes, M. Ayán-Varela, H. Oliveira, M. J. Feito, R. Diez-Orejas, J. I. Paredes, S. Villar-Rodil, M. Vila, M. T. Portolés, I. F. Duarte, Colloids Surf. B Biointerfaces 2020, 186, 110709.
- 8S. A. Macparland, J. C. Liu, X.-Z. Ma, B. T. Innes, A. M. Bartczak, B. K. Gage, J. Manuel, N. Khuu, J. Echeverri, I. Linares, R. Gupta, M. L. Cheng, L. Y. Liu, D. Camat, S. W. Chung, R. K. Seliga, Z. Shao, E. Lee, S. Ogawa, M. Ogawa, M. D. Wilson, J. E. Fish, M. Selzner, A. Ghanekar, D. Grant, P. Greig, G. Sapisochin, N. Selzner, N. Winegarden, O. Adeyi, et al., Nat. Commun. 2018, 9, 4383.
- 9A. Deczkowska, E. David, P. Ramadori, D. Pfister, M. Safran, B. Li, A. Giladi, D. A. Jaitin, O. Barboy, M. Cohen, I. Yofe, C. Gur, S. Shlomi-Loubaton, S. Henri, Y. Suhail, M. Qiu, S. Kam, H. Hermon, E. Lahat, G. Ben Yakov, O. Cohen-Ezra, Y. Davidov, M. Likhter, D. Goitein, S. Roth, A. Weber, B. Malissen, A. Weiner, Z. Ben-Ari, M. Heikenwälder, et al., Nat. Med. 2021, 27, 1043.
- 10K. Yang, J. Wan, S. Zhang, Y. Zhang, S.-T. Lee, Z. Liu, ACS Nano 2011, 5, 516.
- 11A. Sica, A. Mantovani, J. Clin. Invest. 2012, 122, 787.
- 12J. M. Olefsky, C. K. Glass, Ann. Rev. Physiol. 2010, 72, 219.
- 13F. Tacke, J. Hepatol. 2017, 66, 1300.
- 14Z. Shan, C. Ju, Front. Immunol. 2020, 11, 322.
- 15G. Marrone, V. H. Shah, J. Gracia-Sancho, J. Hepatol. 2016, 65, 608.
- 16A. Louvet, F. Teixeira-Clerc, M.-N. Chobert, V. Deveaux, C. Pavoine, A. Zimmer, F. Pecker, A. Mallat, S. Lotersztajn, Hepatology 2011, 54, 1217.
- 17J. Wan, M. Benkdane, E. Alons, S. Lotersztajn, C. Pavoine, Am. J. Pathol. 2014, 184, 1763.
- 18A. Hernández, Y. Geng, R. Sepúlveda, N. Solís, J. Torres, J. P. Arab, F. Barrera, D. Cabrera, H. Moshage, M. Arrese, Biochim. Biophys. Acta Mol. Basis. Dis. 2020, 1866, 165753.
- 19Z. Xu, S. Wang, Y. Li, M. Wang, P. Shi, X. Huang, ACS Appl. Mater. Interfaces 2014, 6, 17268.
- 20B. Tian, C. Wang, S. Zhang, L. Feng, Z. Liu, ACS Nano 2011, 5, 7000.
- 21A. Gola, M. G. Dorrington, E. Speranza, C. Sala, R. M. Shih, A. J. Radtke, H. S. Wong, A. P. Baptista, J. M. Hernandez, G. Castellani, I. D. C. Fraser, R. N. Germain, Nature 2021, 589, 131.
- 22J. Li, C. Chen, T. Xia, Adv. Mater. 2022, 34, 2106456.
- 23L. V. Borovikova, S. Ivanova, M. Zhang, H. Yang, G. I. Botchkina, L. R. Watkins, H. Wang, N. Abumrad, J. W. Eaton, K. J. Tracey, Nature 2000, 405, 458.
- 24D. Li, M. Wu, Signal Transduct. Target Ther. 2021, 6, 291.
- 25W. Fan, H. Morinaga, J. J. Kim, E. Bae, N. J. Spann, S. Heinz, C. K. Glass, J. M. Olefsky, EMBO J. 2010, 29, 4223.
- 26C. A. Hunter, S. A. Jones, Nat. Immunol. 2015, 16, 448.
- 27J. Scheller, A. Chalaris, D. Schmidt-Arras, S. Rose-John, Biochim. Biophys. Acta 2011, 1813, 878.
- 28A. Dubey, L. Izakelian, E. A. Ayaub, L. Ho, K. Stephenson, S. Wong, K. Kwofie, R. C. Austin, F. Botelho, K. Ask, C. D. Richards, Immunol. Cell Biol. 2018, 96, 257.
- 29P. Khramtsov, M. Bochkova, V. Timganova, A. Nechaev, S. Uzhviyuk, K. Shardina, I. Maslennikova, M. Rayev, S. Zamorina, Nanomaterials 2021, 12, 126.
- 30M. J. Feito, R. Diez-Orejas, M. Cicuéndez, L. Casarrubios, J. M. Rojo, M. T. Portolés, Colloids Surf. B Biointerfaces 2019, 176, 96.
- 31S. Akira, K. Takeda, Nat. Rev. Immunol. 2004, 4, 499.
- 32R. Patra, N. C. Das, S. Mukherjee, Adv. Exp. Med. Biol. 2021, 1352, 87.
- 33R. Huang, Z. Sun, S. Xian, D. Song, Z. Chang, P. Yan, J. Zhang, H. Yin, Z. Zheng, P. Hu, Z. Li, D. Huang, Y. Liu, C. Jiang, M. Li, S. Li, T. Meng, D. Yang, Z. Huang, Ann. Med. 2022, 54, 1918.
- 34K. Newton, X. Sun, V. M. Dixit, Mol. Cell. Biol. 2004, 24, 1464.
- 35W.-Y. Hsieh, Q. D. Zhou, A. G. York, K. J. Williams, P. O. Scumpia, E. B. Kronenberger, X. P. Hoi, B. Su, X. Chi, V. L. Bui, E. Khialeeva, A. Kaplan, Y. M. Son, A. S. Divakaruni, J. Sun, S. T. Smale, R. A. Flavell, S. J. Bensinger, Cell Metab. 2020, 32, 128.
- 36S. A. Chandrasekar, T. Palaniyandi, U. Parthasarathy, H. Surendran, S. Viswanathan, M. R. A. Wahab, G. Baskar, S. Natarajan, K. Ranjan, Pathol. Res. Pract. 2023, 248, 154673.
- 37K. Minton, Nat. Rev. Immunol. 2019, 19, 660.
- 38J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, Z. Zhang, Small 2012, 8, 2577.
- 39B. Wang, X. Su, J. Liang, L. Yang, Q. Hu, X. Shan, J. Wan, Z. Hu, Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 514.
- 40A. Kuznik, M. Bencina, U. Svajger, M. Jeras, B. Rozman, R. Jerala, J. Immunol. 2011, 186, 4794.
- 41K. Sato, C. Hall, S. Glaser, H. Francis, F. Meng, G. Alpini, Am. J. Pathol. 2016, 186, 2238.
- 42I. Coelho, N. Duarte, M. P. Macedo, C. Penha-Gonçalves, J. Clin. Med. 2021, 10, 1248.
- 43R. Stienstra, F. Saudale, C. Duval, S. Keshtkar, J. E. M. Groener, N. Van Rooijen, B. Staels, S. Kersten, M. Müller, Hepatology 2010, 51, 511.
- 44L. M. Casey, K. R. Hughes, M. N. Saunders, S. D. Miller, R. M. Pearson, L. D. Shea, Biomaterials 2022, 283, 121457.
- 45Q. Zhang, J. Wei, Z. Liu, X. Huang, M. Sun, W. Lai, Z. Chen, J. Wu, Y. Chen, X. Guo, Q. Huang, Redox Biol. 2022, 54, 102367.
- 46M. Terada, K. Horisawa, S. Miura, Y. Takashima, Y. Ohkawa, S. Sekiya, K. Matsuda-Ito, A. Suzuki, Sci. Rep. 2016, 6, 34691.