Modulating Photoinduced Electron Transfer between Photosensitive MOF and Co(II) Proton Reduction Sites for Boosting Photocatalytic Hydrogen Production
Jianguo Bai
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorJun Wang
School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023 P. R. China
Search for more papers by this authorHao Zheng
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorXiaoli Zhao
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorCorresponding Author
Pengyan Wu
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorLi Pei
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorCorresponding Author
Jian Wang
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorJianguo Bai
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorJun Wang
School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023 P. R. China
Search for more papers by this authorHao Zheng
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorXiaoli Zhao
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorCorresponding Author
Pengyan Wu
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorLi Pei
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 P. R. China
Search for more papers by this authorCorresponding Author
Jian Wang
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Photocatalytic hydrogen production via water splitting is the subject of intense research. Photoinduced electron transfer (PET) between a photosensitizer (PS) and a proton reduction catalyst is a prerequisite step and crucial to affecting hydrogen production efficiency. Herein, three photoactive metal–organic framework (MOF) systems having two different PET processes where PS and Co(II) centers are either covalently bonded or coexisting to drive photocatalytic H2 production are built. Compared to these two intramolecular PET systems including CoII-Zn-PDTP prepared from the post-synthetic metalation toward uncoordinated pyridine N sites of Zn-PDTP and sole cobalt-based MOF Co-PDTP, the CoII(bpy)3@Zn-PDTP system impregnated by molecular cocatalyst possessing intermolecular PET process achieves the highest H2 evolution rate of 116.8 mmol g−1 h−1 over a period of 10 h, about 7.5 and 9.3 times compared to CoII-Zn-PDTP and Co-PDTP in visible-light-driven H2 evolution, respectively. Further studies reveal that the enhanced photoactivity in CoII(bpy)3@Zn-PDTP can be ascribed to the high charge-separation efficiency of Zn-PDTP and the synergistic intermolecular interaction between Zn-PDTP and cobalt complexes. The present work demonstrates that the rational design of PET process between MOFs and catalytic metal sites can be a viable strategy for the development of highly efficient photocatalysts with enhanced photocatalytic activities.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202305024-sup-0001-SuppMat.pdf765.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) X. B. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Bradshaw, M. J. Rosseinsky, Science 2004, 306, 1012; b) B. J. Zhu, R. Q. Zou, Q. Xu, Adv. Energy Mater. 2018, 8, 1801193.
- 2a) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi, Science 2003, 300, 1127; b) N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729.
- 3a) X. Chen, S. Shen, L. Guo, S. S. Mao, Chem. Rev. 2010, 110, 6503; b) M. A. Nasalevich, R. Becker, E. V. Ramos-Fernandez, S. Castellanos, S. L. Veber, M. V. Fedin, F. Kapteijn, J. N. H. Reek, J. I. van der Vlugt, J. Gascon, Energy Environ. Sci. 2015, 8, 364.
- 4a) Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, J. Phys. Chem. C 2012, 116, 20848; b) C. Wang, K. E. deKra, W. B. Lin, J. Am. Chem. Soc. 2012, 134, 7211; c) S. Ghosh, A. Nakada, M. A. Springer, T. Kawaguchi, K. Suzuki, H. Kaji, I. Baburin, A. Kuc, T. Heine, H. Suzuki, R. Abe, S. Seki, J. Am. Chem. Soc. 2020, 142, 9752.
- 5a) W. R. McNamara, Z. Han, P. J. Alperin, W. W. Brennessel, P. L. Holland, R. Eisenberg, J. Am. Chem. Soc. 2011, 133, 15368; b) P. Zhang, M. Wang, J. Dong, X. Li, F. Wang, L. Wu, L. Sun, J. Phys. Chem. C 2010, 114, 15868.
- 6a) W. T. Eckenhoff, Coord. Chem. Rev. 2018, 373, 295; b) Z. Li, J. D. Xiao, H. L. Jiang, ACS Catal. 2016, 6, 5359.
- 7a) X. J. Kong, Z. Lin, Z. M. Zhang, T. Zhang, W. Lin, Angew. Chem., Int. Ed. 2016, 55, 6411;
b) A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew. Chem., Int. Ed. 2012, 124, 7558.
10.1002/ange.201202471 Google Scholar
- 8a) L. Yang, M. Lv, Y. Song, K. Yin, X. Wang, X. Cheng, K. Cao, S. Li, C. Wang, Y. Yao, W. Luo, Z. Zou, Appl. Catal., B 2020, 279, 119341; b) C. Xu, H. Liu, D. Li, J.-H. Su, H.-L. Jiang, Chem. Sci. 2018, 9, 3152.
- 9a) G. G. Liu, G. X. Zhao, W. Zhou, Y. Y. Liu, H. Pang, H. B. Zhang, D. Hao, X. G. Meng, P. Li, T. Kako, J. H. Ye, Adv. Funct. Mater. 2016, 26, 6822; b) X. Li, M. Wang, S. Zhang, J. Pan, Y. Na, J. Liu, B. Åkermark, L. Sun, J. Phys. Chem. B 2008, 112, 8198.
- 10a) O. M. Yaghi, G. Li, H. Li, Nature 1995, 378, 703; b) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem., Int. Ed. 2004, 43, 2334.
- 11a) G. Férey, Chem. Soc. Rev. 2008, 37, 191; b) S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.
- 12a) H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 974; b) X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Angew. Chem., Int. Ed. 2006, 45, 1557.
- 13a) H. C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673; b) H. C. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415; c) N. Stock, S. Biswas, Chem. Rev. 2012, 112, 933.
- 14a) T. R. Cook, Y.-R. Zheng, P. J. Stang, Chem. Rev. 2013, 113, 734; b) S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.-C. Zhou, Adv. Mater. 2018, 30, 1704303.
- 15a) J. J. Perry IV, J. A. Perman, M. J. Zaworotko, Chem. Soc. Rev. 2009, 38, 1400; b) A. Schneemann, V. Bon, I. Schwedler, I. Senkovsk, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062; c) Q. Yang, Q. Xu, H.-L. Jiang, Chem. Soc. Rev. 2017, 46, 4774.
- 16a) A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, O. K. Farha, Nat. Rev. Mater. 2016, 1, 15018; b) Q.-L. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5468; c) Z. Wang, S. M. Cohen, Chem. Soc. Rev. 2009, 38, 1315.
- 17a) L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105; b) Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126.
- 18a) W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, S. K. Ghosh, Chem. Soc. Rev. 2017, 46, 3242; b) B. Chen, S. Xiang, G. Qian, Acc. Chem. Res. 2010, 43, 1115.
- 19a) H.-Y. Li, S.-N. Zhao, S.-Q. Zang, J. Li, Chem. Soc. Rev. 2020, 49, 6364; b) S. Wu, H. Min, W. Shi, P. Cheng, Adv. Mater. 2020, 32, 1805871.
- 20a) J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477; b) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724.
- 21a) T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. Llabrés i Xamena, J. Gascon, Nat. Mater. 2015, 14, 48; b) Y. He, W. Zhou, G. Qian, B. Chen, Chem. Soc. Rev. 2014, 43, 5657.
- 22a) M. Ding, R. W. Flaig, H.-L. Jiang, O. M. Yaghi, Chem. Soc. Rev. 2019, 48, 2783; b) S. Ma, H.-C. Zhou, Chem. Commun. 2010, 46, 44.
- 23a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450; b) A. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606.
- 24a) L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248; b) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 2014, 43, 6011.
- 25a) Y.-B. Huang, J. Liang, X.-S. Wang, R. Cao, Chem. Soc. Rev. 2017, 46, 126; b) A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkov, F. Verpoort, Chem. Soc. Rev. 2015, 44, 6804; c) L. Zhu, X.-Q. Liu, H.-L. Jiang, L.-B. Sun, Chem. Rev. 2017, 117, 8129.
- 26a) M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353; b) L. Sun, M. G. Campbell, M. Dincă, Angew. Chem., Int. Ed. 2016, 55, 3566.
- 27a) W. Zhang, R.-G. Xiong, Chem. Rev. 2012, 112, 1163; b) Q. L. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5468.
- 28a) B. E. Meteku, J. Huang, J. Zeng, F. Subhan, F. Feng, Y. Zhang, Z. Qiu, S. Aslam, G. Li, Z. Yan, Coord. Chem. Rev. 2020, 413, 213261; b) J.-H. Qin, W.-J. Qin, Z. Xiao, J.-K. Yang, H.-R. Wang, X.-G. Yang, D.-S. Li, L.-F. Ma, Inorg. Chem. 2021, 60, 18593.
- 29a) T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982; b) C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Energy Environ. Sci. 2014, 7, 2831; c) J.-D. Xiao, H.-L. Jiang, Acc. Chem. Res. 2019, 52, 356.
- 30a) A. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 2018, 47, 8134; b) D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, ACS Catal. 2014, 4, 4254; c) A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew. Chem., Int. Ed. 2012, 51, 7440.
- 31a) W. Wang, X. Xu, W. Zhou, Z. Shao, Adv. Sci. 2017, 4, 1600371; b) Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, J. Phys. Chem. C 2012, 116, 20848; c) S. Wang, X. Wang, Small 2015, 11, 3097.
- 32a) P. Li, J. Z. Li, X. Feng, J. Li, Y. C. Hao, J. W. Zhang, H. Wang, A. X. Yin, J. W. Zhou, X. J. Ma, B. Wang, Nat. Commun. 2019, 10, 2177; b) L. Zeng, X. Guo, C. He, C. Duan, ACS Catal. 2016, 6, 7935; c) Z. Jiang, X. Xu, Y. Ma, H. S. Cho, D. Ding, C. Wang, J. Wu, P. Oleynikov, M. Jia, J. Cheng, Y. Zhou, O. Terasaki, T. Peng, L. Zan, H. Deng, Nature 2020, 586, 549.
- 33a) J. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang, Z. Yan, Chem. Commun. 2014, 50, 7063; b) J.-D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S.-H. Yu, H.-L. Jiang, Angew. Chem., Int. Ed. 2016, 55, 9389; c) X. Feng, Y. Pi, Y. Song, C. Brzezinski, Z. Xu, Z. Li, W. Lin, J. Am. Chem. Soc. 2020, 142, 690.
- 34a) Y. Shi, A.-F. Yang, C.-S. Cao, B. Zhao, Coord. Chem. Rev. 2019, 390, 50; b) F. Guo, J.-H. Guo, P. Wang, Y.-S. Kang, Y. Liu, J. Zhao, W.-Y. Sun, Chem. Sci. 2019, 10, 4834; c) Y.-F. Chen, L.-L. Tan, J.-M. Liu, S. Qin, Z.-Q. Xie, J.-F. Huang, Y.-W. Xu, L.-M. Xiao, C.-Y. Su, Appl. Catal., B 2017, 206, 426.
- 35a) V. W.-W. Yam, A. K.-W. Chan, E. Y.-H. Hong, Nat. Rev. Chem. 2020, 4, 528; b) M. A. Lebedeva, T. W. Chamberlain, A. N. Khlobystov, Chem. Rev. 2015, 115, 11301.
- 36a) J. Li, S.-C. Dong, A. Opitz, L.-S. Liao, N. Koch, J. Mater. Chem. C 2017, 5, 6989; b) Y. Qi, W. Ning, Y. Zou, X. Cao, S. Gong, C. Yang, Adv. Funct. Mater. 2021, 31, 2102017.
- 37a) L.-Z. Dong, L. Zhang, J. Liu, Q. Huang, M. Lu, W.-X. Ji, Y.-Q. Lan, Angew. Chem., Int. Ed. 2020, 59, 2659; b) X.-K. Wang, J. Liu, L. Zhang, L.-Z. Dong, S.-L. Li, Y.-H. Kan, D.-S. Li, Y.-Q. Lan, ACS Catal. 2019, 9, 1726.
- 38a) J. L. Dempsey, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 2010, 132, 1060; b) J. Dong, M. Wang, P. Zhang, S. Yang, J. Liu, X. Li, L. Sun, J. Phys. Chem. C 2011, 115, 15089.
- 39Z. Han, W. R. McNamara, M.-S. Eum, P. L. Holland, R. Eisenberg, Angew. Chem., Int. Ed. 2012, 51, 1667.
- 40a) S. Pullen, H. Fei, A. Orthaber, S. M. Cohen, S. Ott, J. Am. Chem. Soc. 2013, 135, 16997; b) H. Liu, C. Xu, D. Li, H.-L. Jiang, Angew. Chem., Int. Ed. 2018, 57, 5379.
- 41H.-Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S.-H. Yu, H.-L. Jiang, J. Am. Chem. Soc. 2015, 137, 13440.