Guest-Stimulated Nonplanar Porphyrins in Flexible Metal−Organic Frameworks
Qian Xu
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorJishi Chen
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorYujun Wang
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorDongjuan Wang
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorXianzhen Xu
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Qingdao Boting Hydrogen Age Ocean Technol R&D Ctr, Qingdao Boting Technol. Co. Ltd., Qingdao, 266071 P. R. China
Search for more papers by this authorJianfei Xia
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorKou-Lin Zhang
College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorXin Zhou
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorWeidong Fan
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao, 266580 P. R. China
Search for more papers by this authorZonghua Wang
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorCorresponding Author
Chuantao Hou
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Daofeng Sun
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao, 266580 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQian Xu
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorJishi Chen
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorYujun Wang
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorDongjuan Wang
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorXianzhen Xu
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Qingdao Boting Hydrogen Age Ocean Technol R&D Ctr, Qingdao Boting Technol. Co. Ltd., Qingdao, 266071 P. R. China
Search for more papers by this authorJianfei Xia
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorKou-Lin Zhang
College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 P. R. China
Search for more papers by this authorXin Zhou
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorWeidong Fan
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao, 266580 P. R. China
Search for more papers by this authorZonghua Wang
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
Search for more papers by this authorCorresponding Author
Chuantao Hou
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Daofeng Sun
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao, 266580 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Nonplanar porphyrins with out-of-plane distortions play crucial roles in many biological functions and chemical applications. The artificial construction of nonplanar porphyrins usually involves organic synthesis and modification, which is a highly comprehensive approach. However, incorporating porphyrins into guest-stimulated flexible systems allows to manipulate the porphyrin distortion through simple ad/desorption of guest molecules. Here, a series of porphyrinic zirconium metal−organic frameworks (MOFs) is reported that exhibit guest-stimulated breathing behavior. X-Ray diffraction analysis and skeleton deviation plots confirm that the material suffers from porphyrin distortion to form a ruffled geometry under the desorption of guest molecules. Further investigation reveals that not only the degree of nonplanarity can be precisely manipulated but also the partial distortion of porphyrin in a single crystal grain can be readily achieved. As Lewis acidic catalyst, the MOF with nonplanar Co-porphyrin exhibits active properties in catalyzing CO2/propylene oxide coupling reactions. This porphyrin distortion system provides a powerful tool for manipulating nonplanar porphyrins in MOFs with individual distortion profiles for various advanced applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
smll202304771-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
smll202304771-sup-0002-cif.zip1.2 MB | Supporting cif |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Seufert, M.-L. Bocquet, W. Auwärter, A. Weber-Bargioni, J. Reichert, N. Lorente, J. V. Barth, Nat. Chem. 2011, 3, 114.
- 2W. Bolton, M. F. Perutz, Nature 1970, 228, 551.
- 3T. Ishizuka, N. Grover, C. J. Kingsbury, H. Kotani, M. O. Senge, T. Kojima, Chem. Soc. Rev. 2022, 51, 7560.
- 4M. Roucan, M. Kielmann, S. J. Connon, S. S. R. Bernhard, M. O. Senge, Chem. Commun. 2018, 54, 26.
- 5W. Jentzen, M. C. Simpson, J. D. Hobbs, X. Song, T. Ema, N. Y. Nelson, C. J. Medforth, K. M. Smith, M. Veyrat, M. Mazzanti, R. Ramasseul, J.-C. Marchon, T. Takeuchi, W. A. Goddard, J. A. Shelnutt, J. Am. Chem. Soc. 1995, 117, 11085.
- 6R. E. Haddad, S. Gazeau, J. Pécaut, J.-C. Marchon, C. J. Medforth, J. A. Shelnutt, J. Am. Chem. Soc. 2003, 125, 1253.
- 7C. J. Kingsbury, M. O. Senge, Coord. Chem. Rev. 2021, 431, 213760.
- 8A. S. Bulbul, N. Chaudhri, M. Shanu, J. N. Acharyya, G. Vijaya Prakash, M. Sankar, Inorg. Chem. 2022, 61, 9968.
- 9T.-L. Lam, K.-C. Tong, C. Yang, W.-L. Kwong, X. Guan, M.-D. Li, V. Kar-Yan Lo, S. Lai-Fung Chan, D. Lee Phillips, C.-N. Lok, C.-M. Che, Chem. Sci. 2019, 10, 293.
- 10R. Freund, S. Canossa, S. M. Cohen, W. Yan, H. Deng, V. Guillerm, M. Eddaoudi, D. G. Madden, D. Fairen-Jimenez, H. Lyu, L. K. Macreadie, Z. Ji, Y. Zhang, B. Wang, F. Haase, C. Wöll, O. Zaremba, J. Andreo, S. Wuttke, C. S. Diercks, Angew. Chem., Int. Ed. 2021, 60, 23946.
- 11G. Cai, P. Yan, L. Zhang, H.-C. Zhou, H.-L. Jiang, Chem. Rev. 2021, 121, 12278.
- 12L. Feng, K.-Y. Wang, X.-L. Lv, T.-H. Yan, H.-C. Zhou, Natl. Sci. Rev. 2020, 70, 1743.
10.1093/nsr/nwz170 Google Scholar
- 13Y. Li, Y. Wang, W. Fan, D. Sun, Dalton Trans. 2022, 51, 4608.
- 14J. H. Lee, S. Jeoung, Y. G. Chung, H. R. Moon, Coord. Chem. Rev. 2019, 389, 161.
- 15Y. Zhang, X. Zhang, J. Lyu, K. Otake, X. Wang, L. R. Redfern, C. D. Malliakas, Z. Li, T. Islamoglu, B. Wang, O. K. Farha, J. Am. Chem. Soc. 2018, 140, 11179.
- 16A. P. Katsoulidis, D. Antypov, G. F. S. Whitehead, E. J. Carrington, D. J. Adams, N. G. Berry, G. R. Darling, M. S. Dyer, M. J. Rosseinsky, Nature 2019, 565, 213.
- 17X. Zhang, M. C. Wasson, M. Shayan, E. K. Berdichevsky, J. Ricardo-Noordberg, Z. Singh, E. K. Papazyan, A. J. Castro, P. Marino, Z. Ajoyan, Z. Chen, T. Islamoglu, A. J. Howarth, Y. Liu, M. B. Majewski, M. J. Katz, J. E. Mondloch, O. K. Farha, Coord. Chem. Rev. 2021, 429, 213615.
- 18D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei, H.-C. Zhou, Angew. Chem., Int. Ed. 2012, 51, 10307.
- 19S. S. Rajasree, X. Li, P. Deria, Chemistry 2021, 4, 47.
- 20J. Chen, Y. Zhu, S. Kaskel, Angew. Chem., Int. Ed. 2021, 60, 5010.
- 21C. Li, H. Schopmans, L. Langer, S. Marschner, A. Chandresh, J. Bürck, Y. Tsuchiya, A. Chihaya, W. Wenzel, S. Bräse, M. Kozlowska, L. Heinke, Angew. Chem., Int. Ed. 2023, 62, e202217377.
- 22S. Lipstman, I. Goldberg, Cryst. Growth Des. 2013, 13, 942.
- 23S. Muniappan, S. Lipstman, S. George, I. Goldberg, Inorg. Chem. 2007, 46, 5544.
- 24Y. Xiao, Y. Chen, W. Wang, H. Yang, A. N. Hong, X. Bu, P. Feng, J. Am. Chem. Soc. 2023, 145, 10980.
- 25M. W. Grinstaff, M. G. Hill, E. R. Birnbaum, W. P. Schaefer, J. A. Labinger, H. B. Gray, Inorg. Chem. 1995, 34, 4896.
- 26T. Ikeue, Y. Ohgo, T. Yamaguchi, M. Takahashi, M. Takeda, M. Nakamura, Angew. Chem., Int. Ed. 2001, 40, 2617.
10.1002/1521-3773(20010716)40:14<2617::AID-ANIE2617>3.0.CO;2-B PubMed Web of Science® Google Scholar
- 27E. Bletsa, M. Solakidou, M. Louloudi, Y. Deligiannakis, Chem. Phys. Lett. 2016, 649, 48.
- 28D. Sahoo, T. Guchhait, S. P. Rath, Eur. J. Inorg. Chem. 2016, 2016, 3441.
- 29Z. Ji, Z. Di, H. Li, S. Zou, M. Wu, M. Hong, Inorg. Chem. Commun. 2021, 128, 108597.
- 30S. Yuan, L. Zou, H. Li, Y. Chen, J. Qin, Q. Zhang, W. Lu, M. B. Hall, H. Zhou, Angew. Chem., Int. Ed. 2016, 55, 10776.
- 31S. Seth, S. Jhulki, Mater. Horiz. 2021, 8, 700.
- 32D. Feng, W.-C. Chung, Z. Wei, Z.-Y. Gu, H.-L. Jiang, Y.-P. Chen, D. J. Darensbourg, H.-C. Zhou, J. Am. Chem. Soc. 2013, 135, 17105.
- 33V. Guillerm, Ł. J. Weseliński, Y. Belmabkhout, A. J. Cairns, V. D'Elia, Ł. Wojtas, K. Adil, M. Eddaoudi, Nat. Chem. 2014, 6, 673.
- 34Z. L. Magnuson, Q. Cheng, W. Zhang, Y.-S. Chen, L. Wojtas, A. Nafady, A. M. Al-Enizi, R. W. Larsen, X. P. Zhang, S. Ma, Cryst. Growth Des. 2021, 21, 2786.
- 35L. Zhang, S. Yuan, L. Feng, B. Guo, J. Qin, B. Xu, C. Lollar, D. Sun, H. Zhou, Angew. Chem., Int. Ed. 2018, 57, 5095.