Rheology Engineering for Dry-Spinning Robust N-Doped MXene Sediment Fibers toward Efficient Charge Storage
Zhongming Xia
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorHenghan Dai
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorJin Chang
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorCorresponding Author
Jia Yang
School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003 P. R. China
E-mail: [email protected]
Search for more papers by this authorHuifang Wang
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorYurong Wang
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorZengyu Hui
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorRui Wang
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorCorresponding Author
Gengzhi Sun
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
E-mail: [email protected]
Search for more papers by this authorZhongming Xia
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorHenghan Dai
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorJin Chang
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorCorresponding Author
Jia Yang
School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003 P. R. China
E-mail: [email protected]
Search for more papers by this authorHuifang Wang
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorYurong Wang
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorZengyu Hui
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorRui Wang
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorCorresponding Author
Gengzhi Sun
School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
MXene nanosheets are believed to be an ideal candidate for fabricating fiber supercapacitors (FSCs) due to their metallic conductivity and superior volumetric capacitance, while challenges remain in continuously collecting bare MXene fibers (MFs) via the commonly used wet-spinning technique due to the intercalation of water molecules and a weak interaction between Ti3C2TX nanosheets in aqueous coagulation bath that ultimately leads to a loosely packed structure. To address this issue, for the first time, a dry-spinning strategy is proposed by engineering the rheological behavior of Ti3C2TX sediment and extruding the highly viscose stock directly through a spinneret followed by a solvent evaperation induced solidification. The dry-spun Ti3C2TX fibers show an optimal conductivity of 2295 S cm−1, a tensile strength of 64 MPa and a specific capacitance of 948 F cm−3. Nitrogen (N) doping further improves the capacitance of MFs to 1302 F cm−3 without compromising their mechanical and electrical properties. Moreover, the FSC based on N-doped MFs exhibits a high volumetric capacitance of 293 F cm−3, good stability over 10 000 cycles, excellent flexibility upon bending-unbending, superior energy/power densities and anti-self-discharging property. The excellent electrochemical and mechanical properties endow the dry-spun MFs great potential for future applications in wearable electronics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202304687-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Hui, L. Zhang, G. Ren, G. Sun, H. Yu, W. Huang, Adv. Mater. 2023, 35, 2211202.
- 2Y. Jia, Q. Jiang, H. Sun, P. Liu, D. Hu, Y. Pei, W. Liu, X. Crispin, S. Fabiano, Y. Ma, Y. Cao, Adv. Mater. 2021, 33, 2102990.
- 3D. Chen, K. Jiang, T. Huang, G. Shen, Adv. Mater. 2020, 32, 1901806.
- 4T. Xu, Y. Wang, Z. Xiong, Y. Wang, Y. Zhou, X. Li, Nano-Micro Lett. 2023, 15, 6.
- 5J. Li, Y. Wang, X. Li, Q. Gao, S. Zhang, J. Alloys Compd. 2021, 881, 160551.
- 6T. Xu, Y. Wang, Y. Xue, J. Li, Y. Wang, Chem. Eng. J. 2023, 470, 144247.
- 7J. Li, Y. Wang, H. Song, Y. Guo, S. Hu, H. Zheng, S. Zhang, X. Li, Q. Gao, C. Li, Z. Zhu, Y. Wang, Adv. Compos. Hybrid Mater. 2023, 6, 83.
- 8Y. Wei, P. Zhang, R. A. Soomro, Q. Zhu, B. Xu, Adv. Mater. 2021, 33, 2103148.
- 9X. Zhao, J. Zhang, K. Lv, N. Kong, Y. Shao, J. Tao, Carbon 2022, 200, 38.
- 10Q. Yang, Z. Xu, B. Fang, T. Huang, S. Cai, H. Chen, Y. Liu, K. Gopalsamy, W. Gao, C. Gao, J. Mater. Chem. A 2017, 5, 22113.
- 11H. Wang, Y. Wang, J. Chang, J. Yang, H. Dai, Z. Xia, Z. Hui, R. Wang, W. Huang, G. Sun, Nano Lett. 2023, 23, 5663.
- 12Q. Liu, A. Zhao, X. He, Q. Li, J. Sun, Z. Lei, Z. H. Liu, Adv. Funct. Mater. 2021, 31, 2010944.
- 13Y. Pei, X. Zhang, Z. Hui, J. Zhou, X. Huang, G. Sun, W. Huang, ACS Nano 2021, 15, 3996.
- 14R. Garg, A. Agarwal, M. Agarwal, J. Mater. Sci. 2020, 31, 18614.
- 15H. Shin, W. Eom, K. H. Lee, W. Jeong, D. J. Kang, T. H. Han, ACS Nano 2021, 15, 3320.
- 16Y. Li, X. Zhang, Adv. Funct. Mater. 2022, 32, 2107767.
- 17B. Akuzum, K. Maleski, B. Anasori, P. Lelyukh, N. J. Alvarez, E. C. Kumbur, Y. Gogotsi, ACS Nano 2018, 12, 2685.
- 18G. Sun, J. H. L. Pang, J. Zhou, Y. Zhang, Z. Zhan, L. Zheng, Appl. Phys. Lett. 2012, 101, 131905.
- 19C. Wang, S. Zhai, Z. Yuan, J. Chen, Z. Yu, Z. Pei, F. Liu, X. Li, L. Wei, Y. Chen, Carbon 2020, 164, 100.
- 20S. Li, Z. Fan, G. Wu, Y. Shao, Z. Xia, C. Wei, F. Shen, X. Tong, J. Yu, K. Chen, M. Wang, Y. Zhao, Z. Luo, M. Jian, J. Sun, R. B. Kaner, Y. Shao, ACS Nano 2021, 15, 7821.
- 21W. Ma, W. Li, M. Li, Q. Mao, Z. Pan, J. Hu, X. Li, M. Zhu, Y. Zhang, Adv. Funct. Mater. 2021, 31, 2100195.
- 22Y. Wen, T. E. Rufford, X. Chen, N. Li, M. Lyu, L. Dai, L. Wang, Nano Energy 2017, 38, 368.
- 23C. Lu, L. Yang, B. Yan, L. Sun, P. Zhang, W. Zhang, Z. Sun, Adv. Funct. Mater. 2020, 30, 2000852.
- 24Z. Wang, Z. Xu, H. Huang, X. Chu, Y. Xie, D. Xiong, C. Yan, H. Zhao, H. Zhang, W. Yang, ACS Nano 2020, 14, 4916.
- 25J. Zhang, S. Seyedin, S. Qin, Z. Wang, S. Moradi, F. Yang, P. A. Lynch, W. Yang, J. Liu, X. Wang, J. M. Razal, Small 2019, 15, 1804732.
- 26J. Zhang, S. Uzun, S. Seyedin, P. A. Lynch, B. Akuzum, Z. Wang, S. Qin, M. Alhabeb, C. E. Shuck, W. Lei, E. C. Kumbur, W. Yang, X. Wang, G. Dion, J. M. Razal, Y. Gogotsi, ACS Cent. Sci. 2020, 6, 254.
- 27Y. Zheng, Y. Wang, J. Zhao, Y. Li, ACS Nano 2023, 17, 2487.
- 28Z. Guo, Z. Lu, Y. Li, W. Liu, Adv. Mater. Interfaces 2022, 9, 2101977.
- 29G. Wu, S. Sun, X. Zhu, Z. Ma, Y. Zhang, N. Bao, Angew. Chem., Int. Ed. 2022, 61, e202115559.
- 30S. Li, Z. Fan, G. Wu, Y. Shao, Z. Xia, C. Wei, F. Shen, X. Tong, J. Yu, K. Chen, M. Wang, Y. Zhao, Z. Luo, M. Jian, J. Sun, R. B. Kaner, Y. Shao, ACS Nano 2021, 15, 7821.
- 31Z. Guo, Y. Li, Z. Lu, Y. Chao, W. Liu, J. Mater. Sci. 2022, 57, 3613.
- 32S. Seyedin, E. R. S. Yanza, J. M. Razal, J. Mater. Chem. A 2017, 5, 24076.
- 33N. He, S. Patil, J. Qu, J. Liao, F. Zhao, W. Gao, ACS Appl. Energy Mater. 2020, 3, 2949.
- 34C. Yu, Y. Gong, R. Chen, M. Zhang, J. Zhou, J. An, F. Lv, S. Guo, G. Sun, Small 2018, 14, 1801203.
- 35Z. Yao, C. Yu, H. Dai, J. Zhou, X. Liu, G. Sun, Carbon 2022, 187, 165.
- 36H. Park, R. B. Ambade, S. H. Noh, W. Eom, K. H. Koh, S. B. Ambade, W. J. Lee, S. H. Kim, T. H. Han, ACS Appl. Mater. Interfaces 2019, 11, 9011.
- 37A. Salman, S. Padmajan Sasikala, I. H. Kim, J. T. Kim, G. S. Lee, J. G. Kim, S. O. Kim, Nanoscale 2020, 12, 20239.
- 38H. Li, J. He, X. Cao, L. Kang, X. He, H. Xu, F. Shi, R. Jiang, Z. Lei, Z. H. Liu, J. Power Sources 2017, 371, 18.
- 39T. Guan, L. Shen, N. Bao, Ind. Eng. Chem. Res. 2019, 58, 17338.
- 40W. Ma, W. Li, M. Li, Q. Mao, Z. Pan, M. Zhu, Y. Zhang, J. Mater. Chem. A 2020, 8, 25355.
- 41S. Wang, N. Liu, J. Su, L. Li, F. Long, Z. Zou, X. Jiang, Y. Gao, ACS Nano 2017, 11, 2066.
- 42H. J. Sim, C. Choi, D. Y. Lee, H. Kim, J. H. Yun, J. M. Kim, T. M. Kang, R. Ovalle, R. H. Baughman, C. W. Kee, S. J. Kim, Nano Energy 2018, 47, 385.
- 43Y. Zhou, F. Guan, F. Zhao, Y. Shen, L. Bao, Batteries Supercaps 2023, 6, 202200536.
- 44D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Nat. Nanotechnol. 2014, 9, 555.
- 45B. Wang, X. Fang, H. Sun, S. He, J. Ren, Y. Zhang, H. Peng, Adv. Mater. 2015, 27, 7854.
- 46J. A. Lee, M. K. Shin, S. H. Kim, H. U. Cho, G. M. Spinks, G. G. Wallace, M. D. Lima, X. Lepró, M. E. Kozlov, R. H. Baughman, S. J. Kim, Nat. Commun. 2013, 4, 1970.
- 47X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, L. Gong, W.-C. Yen, W. Mai, J. Chen, K. Huo, Y. L. Chueh, Z. L. Wang, J. Zhou, ACS Nano 2012, 6, 9200.
- 48S. Zhai, H. E. Karahan, L. Wei, X. Chen, Z. Zhou, X. Wang, Y. Chen, Energy Storage Mater. 2017, 9, 221.
- 49C. Yu, H. Xu, X. Zhao, Y. Sun, Z. Hui, Z. Du, G. Sun, C. Miao, J. Zhou, Q. Chen, W. Huang, Carbon 2020, 157, 106.
- 50Z. Wang, Y. Chen, M. Yao, J. Dong, Q. Zhang, L. Zhang, X. Zhao, J. Power Sources 2020, 448, 227398.
- 51J. Gu, F. Li, Y. Zhu, D. Li, X. Liu, B. Wu, H. A. Wu, X. Fan, X. Ji, Y. Chen, J. Liang, Adv. Mater. 2023, 35, 2209527.
- 52Z. Yu, J. Thomas, Adv. Mater. 2014, 26, 4279.
- 53D. Yu, S. Zhai, W. Jiang, K. Goh, L. Wei, X. Chen, R. Jiang, Y. Chen, Adv. Mater. 2015, 27, 4895.
- 54C. Yu, H. Xu, Y. Sun, X. Zhao, Z. Hui, Y. Gong, R. Chen, Q. Chen, J. Zhou, G. Sun, W. Huang, Carbon 2020, 170, 543.
- 55P. Shi, L. Li, L. Hua, Q. Qian, P. Wang, J. Zhou, G. Sun, W. Huang, ACS Nano 2017, 11, 444.