The Linkage-Moderated Covalent Organic Frameworks with C=N and NN on Charge Transfer Kinetics Towards the Robust Photocatalytic Hydrogen Activity
Haiyang Wu
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
Search for more papers by this authorCorresponding Author
Xuan He
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXing Du
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
Search for more papers by this authorDaheng Wang
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
Search for more papers by this authorWeixin Li
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
Search for more papers by this authorHui Chen
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
Search for more papers by this authorWei Fang
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
Search for more papers by this authorCorresponding Author
Lei Zhao
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHaiyang Wu
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
Search for more papers by this authorCorresponding Author
Xuan He
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXing Du
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
Search for more papers by this authorDaheng Wang
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
Search for more papers by this authorWeixin Li
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
Search for more papers by this authorHui Chen
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
Search for more papers by this authorWei Fang
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
Search for more papers by this authorCorresponding Author
Lei Zhao
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, 430081 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Since the linkages structured in covalent organic frameworks (COFs) usually impact the charge transfer behavior during photocatalytic hydrogen evolution reaction (pc-HER), linkage dependence on charge transfer kinetics should be further claimed. Herein, COFs with N-based linkages and pyrene-based building nodes are constructed to enable us to obtain new clues about the charge transfer behavior and evolution tendency relevant to linkages at a molecular level for pc-HER. It is demonstrated that photo-excited electrons preferably move to the N sites in C=N linkage for pc-HER and are trapped around NN linkage as well. A high electron transfer rate does not point to high photocatalytic activity directly, while a small difference between the electron transfer rate and electron recombination rate ΔkCT − CR predicts the inefficiency of charge transfer in Azod-COFs. Contrarily, large value of ΔkCT − CR in the case of Benzd-COFs, demonstrats an unimpeded charge transfer process to result in boosted pc-HER rate (2027.3 µmol h−1 g−1). This work offers a prominent strategy for the reasonable design of efficient photocatalysts at the molecular level for structural regulation and achieves an efficient charge transfer process for the pc-HER process.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202304367-sup-0001-SuppMat.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Hisatomi, K. Domen, Nat. Catal. 2019, 2, 387.
- 2N. S. Lewis, D. G. Nocera, PNAS 2006, 103, 15729.
- 3W. Li, A. Elzatahry, D. Aldhayan, D. Zhao, Chem. Soc. Rev. 2018, 47, 8203.
- 4W. Zhang, H. He, H. Li, et al., Adv. Energy Mater. 2020, 11, 2003303.
- 5Y. Guo, Q. Liu, Z. Li, Z. Zhang, X. Fang, Appl. Catal., B 2018, 221, 362.
- 6L. Wu, F. Su, T. Liu, G.-Q. Liu, Yi Li, T. Ma, Y. Wang, C. Zhang, Y. Yang, S.-H. Yu, J. Am. Chem. Soc. 2022, 144, 20620.
- 7B. Xiao, T. Lv, J. Zhao, Q. Rong, H. Zhang, H. Wei, J. He, J. Zhang, Y. Zhang, Y. Peng, Q. Liu, ACS Catal. 2021, 11, 13255.
- 8P. Wang, S. Fan, X. Li, J. Wang, Z. Liu, Z. Niu, M. O. Tadé, S. Liu, Nano Energy 2022, 95, 107045.
- 9X. Lu, A. Tong, D. Luo, F. Jiang, J. Wei, Y. Huang, Z. Jiang, Z. Lu, Y. Ni, J. Mater. Chem. A 2022, 10, 4594.
- 10G. Liao, C. Li, B. Fang, Matter 2022, 5, 1635.
- 11L. Zhao, H. Wu, X. He, H. Chen, W. Fang, H. Zhang, X. Du, D. Wang, Sol. RRL 2022, 6, 2200362.
- 12P. J. Waller, F. Gándara, O. M. Yaghi, Acc. Chem. Res. 2015, 48, 3053.
- 13A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166.
- 14H. Lin, Y. Liu, Z. Wang, L. Ling, H. Huang, Q. Li, L. Cheng, Y. Li, J. Zhou, K. Wu, J. Zhang, T. Zhou, Angew. Chem., Int. Ed. 2022, 61, 202214142.
- 15X. Guan, Y. Qian, X. Zhang, et al., Angew. Chem. 2023, 202306135 %@ 0044-8249.
- 16X. Ren, C. Li, J. Liu, et al., ACS Appl. Mater. Interfaces 2022, 14, 1944.
- 17R. A. Marcus, Rev. Modern Phys. 1993, 65, 599.
- 18J.-P. Jeon, Y. J. Kim, S. H. Joo, H. J. Noh, S. K. Kwak, J. B. Baek, Angew. Chem., Int. Ed. 2022, 62, 17416.
- 19K. Wang, Z. Jia, Y. Bai, X. Wang, S. E. Hodgkiss, L. Chen, S. Y. Chong, X. Wang, H. Yang, Y. Xu, F. Feng, J. W. Ward, A. I. Cooper, J. Am. Chem. Soc. 2020, 142, 11131.
- 20S. Xu, H. Sun, M. Addicoat, B. P. Biswal, F. He, S. Park, S. Paasch, T. Zhang, W. Sheng, E. Brunner, Y. Hou, M. Richter, X. Feng, Adv. Mater. 2021, 33, 2006274.
- 21Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- 22M. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, et al., Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford, CT 2009.
- 23T. A. Zubatiuk, O. V. Shishkin, L. Gorb, D. M. Hovorun, J. Leszczynski, Phys. Chem. Chem. Phys. 2013, 15, 18155.
- 24P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
- 25C. Yao, Y. Yang, L. Li, M. Bo, C. Peng, J. Wang, J. Mater. Chem. A 2019, 7, 18150.
- 26J. Yang, J. Jing, Y. Zhu, Adv. Mater. 2021, 33, 2101026.
- 27H. Lin, J. Wang, J. Zhao, Y. Zhuang, B. Liu, Y. Zhu, H. Jia, K. Wu, J. Shen, X. Fu, X. Zhang, J. Long, Angew. Chem. 2022, 134, 202117645.
10.1002/ange.202117645 Google Scholar
- 28L. Liu, X. Chen, Y. Chai, W. Zhang, X. Liu, F. Zhao, Z. Wang, Y. Weng, B. Wu, H. Geng, Y. Zhu, C. Wang, Chem. Eng. J. 2022, 444, 136621.
- 29M. Wang, B. Wang, W. Song, X. Wang, X. Peng, X. Long, Y. Xia, Small 2022, 18, 2105524.
- 30W. Gao, M. Zhang, T. Liu, R. Ming, Q. An, K. Wu, D. Xie, Z. Luo, C. Zhong, F. Liu, F. Zhang, He Yan, C. Yang, Adv. Mater. 2018, 30, 1800052.
- 31R. Pino-Rios, D. Inostroza, G. Cárdenas-Jirón, W. Tiznado, J. Phys. Chem. A 2019, 123, 10556.
- 32T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
- 33W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33.
- 34S. Chen, N. Ullah, R. Zhang, J. Phys. Chem. Lett. 2018, 9, 4857.
- 35X. Tang, L.-S. Cui, H.-C. Li, A. J. Gillett, F. Auras, Y.-K. Qu, C. Zhong, S. T. E. Jones, Z.-Q. Jiang, R. H. Friend, L.-S. Liao, Nat. Mater. 2020, 19, 1332.
- 36Z. Mi, T. Zhou, W. Weng, J. Unruangsri, K. Hu, W. Yang, C. Wang, K. A. I. Zhang, J. Guo, Angew. Chem. 2021, 133, 9728.
10.1002/ange.202016618 Google Scholar
- 37Y. Li, L. Yang, H. He, H. Wang, X. Fang, Y. Zhao, D. Zheng, Y. Qi, Z. Li, W. Deng, Nat. Commun. 2022, 13, 1355.
- 38Y. Pan, J. Wang, S. Chen, W. Yang, C. Ding, A. Waseem, H.-L. Jiang, Chem. Sci. 2022, 13, 6696.
- 39G. Zhao, Y. Zhang, Z. Gao, H. Li, S. Liu, S. Cai, X. Fang, H. Guo, X. Sun, ACS Energy Lett. 2020, 5, 1022.
- 40C. M. Stuart, R. R. Frontiera, R. A. Mathies, J. Phys. Chem. A 2007, 111, 12072.
- 41Z. Lei, Q. Yang, Y. Xu, S. Guo, W. Sun, H. Liu, L.-P. Lv, Y. Zhang, Y. Wang, Nat. Commun. 2018, 9, 576.
- 42Y. Hu, N. Goodeal, Y. Chen, A. M. Ganose, R. G. Palgrave, H. Bronstein, M. O. Blunt, Chem. Commun. 2016, 52, 9941.
- 43F. Zhang, S. Wei, W. Wei, J. Zou, G. Gu, D. Wu, S. Bi, F. Zhang, Sci. Bull. 2020, 65, 1659.
- 44X. Xiang, B. Zhu, B. Cheng, J. Yu, H. Lv, Small 2020, 16, 2001024.
- 45F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 2020, 11, 4613.
- 46G. Wang, Q. Sun, Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, Chemistry 2015, 21, 2364.
- 47J. F. Janak, Phys. Rev. 1969, 178, 1416.
- 48L. Li, P. A. Salvador, G. S. Rohrer, Nanoscale 2014, 6, 24.
- 49L. Lin, Z. Lin, J. Zhang, X. Cai, W. Lin, Z. Yu, X. Wang, Nat. Catal. 2020, 3, 649.
- 50J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, H. Song, ACS Nano 2017, 11, 9294.
- 51Z. Wei, W. Wang, W. Li, X. Bai, J. Zhao, E. C. M. Tse, D. L. Phillips, Y. Zhu, Angew. Chem., Int. Ed. 2021, 60, 8236.
- 52F. Liu, R. Shi, Z. Wang, Y. Weng, C.-M. Che, Y. Chen, Angew. Chem. 2019, 131, 11917.
- 53W. Wang, Y. Tao, L. Du, Z. Wei, Z. Yan, W. K. Chan, Z. Lian, R. Zhu, D. L. Phillips, G. Li, Appl. Catal., B 2021, 282, 119568.
- 54Z. Yan, W. Wang, L. Du, J. Zhu, D. L. Phillips, J. Xu, Appl. Catal., B 2020, 275, 119151.
- 55J. Piris, T. E. Dykstra, A. A. Bakulin, P. H. M. V. Loosdrecht, W. Knulst, M. T. Trinh, J. M. Schins, L. D. A. Siebbeles, J. Phys. Chem. C 2009, 113, 14500.
- 56T. W. Kim, S. Jun, Y. Ha, R. K. Yadav, A. Kumar, C.-Y. Yoo, I. Oh, H.-K. Lim, J. W. Shin, R. Ryoo, H. Kim, J. Kim, J.-O. Baeg, H. Ihee, Nat. Commun. 2019, 10, 1873.