Two Birds with One Stone: Micro/Nanostructured SiOxCy Composites for Stable Li-Ion and Li Metal Anodes
Shangze Fan
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Search for more papers by this authorCorresponding Author
Shiqiang Cui
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang, 050000 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJiangjiang Zhang
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Search for more papers by this authorJinsheng Rong
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Search for more papers by this authorWenxin Wang
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Search for more papers by this authorCorresponding Author
Xuteng Xing
School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYaran Liu
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Search for more papers by this authorWenwen Ma
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Search for more papers by this authorCorresponding Author
Jing-Tai Zhao
School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004 China
Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShangze Fan
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Search for more papers by this authorCorresponding Author
Shiqiang Cui
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang, 050000 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJiangjiang Zhang
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Search for more papers by this authorJinsheng Rong
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Search for more papers by this authorWenxin Wang
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Search for more papers by this authorCorresponding Author
Xuteng Xing
School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYaran Liu
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Search for more papers by this authorWenwen Ma
School of Science, Hebei University of Science and Technology, Shijiazhuang, 050000 China
Search for more papers by this authorCorresponding Author
Jing-Tai Zhao
School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004 China
Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Developing stable silicon-based and lithium metal anodes still faces many challenges. Designing new highly practical silicon-based anodes with low-volume expansion and high electrical conductivity, and inhibiting lithium dendrite growth are avenues for developing silicon-based and lithium metal anodes, respectively. In this study, SiOxCy microtubes are synthesized using a chemical vapor deposition method. As Li-ion battery anodes, the as-prepared SiOxCy not only combines the advantages of nanomaterials and the practical properties of micromaterials, but also exhibits high initial Coulombic efficiency (80.3%), low volume fluctuations (20.4%), and high cyclability (98% capacity retention after 1000 cycles). Furthermore, SiOxCy, as a lithium deposition substrate, can effectively promote the uniform deposition of metallic lithium. As a result, low nucleation overpotential (only 6.0 mV) and high Coulombic efficiency (≈98.9% after 650 cycles, 1.0 mA cm−2 and 1.0 mAh cm−2) are obtained on half cells, as well as small voltage hysteresis (only 9.5 mV, at 1.0 mA cm−2) on symmetric cells based on SiOxCy. Full batteries based on both SiOxCy and SiOxCy@Li anodes demonstrate great practicality. This work provides a new perspective for the simultaneous development of practical SiOxCy and dendrite-free lithium metal anodes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202304290-sup-0001-SuppMat.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Yang, M. Li, G. Lu, Y. Wang, J. Wei, X. Hu, Z. Li, P. Li, C. Xu, Small 2022, 18, 2202911.
- 2Z. Li, J. Fu, S. Zheng, D. Li, X. Guo, Small 2022, 18, 2200891.
- 3C. He, J. Sun, C. Hou, Q. Zhang, Y. Li, K. Li, H. Wang, Chem. Eng. J. 2023, 451, 138993.
- 4S. Zhou, P. Huang, T. Xiong, F. Yang, H. Yang, Y. Huang, D. Li, J. Deng, M. S. Balogun, Small 2021, 17, 2100778.
- 5S. Cui, J. Zhang, S. Fan, X. Xing, L. Deng, Y. Gong, Nano Lett. 2022, 22, 9559.
- 6W. Song, S. Cui, J. Zhang, S. Fan, L. Chen, H.-M. Zhang, Y. Zhang, X. Meng, ACS Appl. Mater. Interfaces 2023, 15, 9421.
- 7Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater. 2017, 7, 1700715.
- 8T. Liu, Q. Chu, C. Yan, S. Zhang, Z. Lin, J. Lu, Adv. Energy Mater. 2019, 9, 1802645.
- 9Z. Yang, W. Liu, Q. Chen, X. Wang, W. Zhang, Q. Zhang, J. Zuo, Y. Yao, X. Gu, K. Si, K. Liu, J. Wang, Y. Gong, Adv. Mater. 2023, 35, 2210130.
- 10Q. Chen, Y. Wei, X. Zhang, Z. Yang, F. Wang, W. Liu, J. Zuo, X. Gu, Y. Yao, X. Wang, F. Zhao, S. Yang, Y. Gong, Adv. Energy Mater. 2022, 12, 2200072.
- 11F. Zhao, P. Zhai, Y. Wei, Z. Yang, Q. Chen, J. Zuo, X. Gu, Y. Gong, Adv. Sci. 2022, 9, 2103930.
- 12Z. Wu, X. Cheng, D. Tian, T. Gao, W. He, C. Yang, Chem. Eng. J. 2019, 375, 121997.
- 13Z. Sang, Z. Zhao, D. Su, P. Miao, F. Zhang, H. Ji, X. Yan, J. Mater. Chem. A 2018, 6, 9064.
- 14Z. Sang, X. Yan, L. Wen, D. Su, Z. Zhao, Y. Liu, H. Ji, J. Liang, S. X. Dou, Energy Storage Mater. 2020, 25, 876.
- 15X. Lin, Y. Dong, X. Liu, X. Chen, A. Li, H. Song, Chem. Eng. J. 2022, 428, 132125.
- 16R. Jain, A. S. Lakhnot, K. Bhimani, S. Sharma, V. Mahajani, R. A. Panchal, M. Kamble, F. Han, C. Wang, N. Koratkar, Nat. Rev. Mater. 2022, 7, 736.
- 17Z. Yi, N. Lin, Y. Zhao, W. Wang, Y. Qian, Y. Zhu, Y. Qian, Energy Storage Mater. 2019, 17, 93.
- 18F. Guo, C. Wu, H. Chen, F. Zhong, X. Ai, H. Yang, J., Qian, Energy Storage Mater. 2020, 24, 635.
- 19S. Cui, P. Zhai, W. Yang, Y. Wei, J. Xiao, L. Deng, Y. Gong, Small 2020, 16, 1905620.
- 20L. Ye, C. Zhang, Y. Zhou, B. Ülgüt, Y. Zhao, J. Qian, J. Energy Chem 2022, 74, 412.
- 21K. Tang, J. Xiao, M. Long, J. Chen, H. Gao, H. Liu, G. Wang, Mater. Today Energy 2022, 24, 100949.
- 22D. Hu, T. Zhao, X. Ping, H. Zheng, L. Xing, X. Liu, J. Zheng, L. Sun, L. Gu, C. Tao, D. Wang, L. Jiao, Angew. Chem. 2019, 131, 7051.
- 23K. Tang, H. Gao, J. Xiao, M. Long, J. Chen, H. Liu, G. Wang, Chem. Eng. J. 2022, 436, 134698.
- 24G. Luo, X. Yin, D. Liu, A. Hussain, F. Liu, X. Cai, ACS Appl. Mater. Interfaces 2022, 14, 33400.
- 25H. Wang, P. Hu, X. Liu, Y. Shen, L. Yuan, Z. Li, Y. Huang, Adv. Sci. 2021, 8, 2100684.
- 26Z. Hou, Y. Yu, W. Wang, X. Zhao, Q. Di, Q. Chen, W. Chen, Y. Liu, Z. Quan, ACS Appl. Mater. Interfaces 2019, 11, 8148.
- 27L. Li, L. Song, H. Xue, C. Jiang, B. Gao, H. Gong, W. Xia, X. Fan, H. Guo, T. Wang, J. He, Carbon 2019, 150, 446.
- 28D. Ding, B. Zhang, L. Wang, J. Dou, Y. Zhai, L. J. N. R. Xu, Nano Res. 2022, 15, 8128.
- 29G. Huang, S. Chen, P. Guo, R. Tao, K. Jie, B. Liu, X. Zhang, J. Liang, Y.-C. Cao, Chem. Eng. J. 2020, 395, 125122.
- 30R. Mo, X. Tan, F. Li, R. Tao, J. Xu, D. Kong, Z. Wang, B. Xu, X. Wang, C. Wang, J. Li, Y. Peng, Y. Lu, Nat. Commun. 2020, 11, 1374.
- 31H. Fukui, H. Ohsuka, T. Hino, K. Kanamura, ACS Appl. Mater. Interfaces 2010, 2, 998.
- 32C. Chandra, W. Devina, H. S. Cahyadi, S. K. Kwak, J. Kim, Chem. Eng. J. 2022, 428, 131072.
- 33J. Wang, H. Liu, J. Diao, X. Gu, H. Wang, J. Rong, B. Zong, D. S. Su, J. Mater. Chem. A 2015, 3, 2305.
- 34Y. Wang, D. Chen, J. Zhang, M. S. Balogun, P. Wang, Y. Tong, Y. Huang, Adv. Funct. Mater. 2022, 32, 2112738.
- 35Y. Li, Y. Xia, K. Liu, K. Ye, Q. Wang, S. Zhang, Y. Huang, H. Liu, ACS Appl. Mater. Interfaces 2020, 12, 25494.
- 36F. Chen, J. Han, D. Kong, Y. Yuan, J. Xiao, S. Wu, D.-M. Tang, Y. Deng, W. Lv, J. Lu, F. Kang, Q.-H. Yang, Natl. Sci. Rev. 2021, 8, 012.
- 37H. Yang, T. Xiong, Z. Zhu, R. Xiao, X. Yao, Y. Huang, M. S. Balogun, Carbon Energy 2022, 4, 820.
- 38X. Yang, H. Huang, Z. Li, M. Zhong, G. Zhang, D. Wu, Carbon 2014, 77, 275.
- 39H. Zhong, H. Zhan, Y.-H. Zhou, J. Power Sources 2014, 262, 10.
- 40P. Hovington, M. Dontigny, A. Guerfi, J. Trottier, M. Lagacé, A. Mauger, C. M. Julien, K. Zaghib, J. Power Sources 2014, 248, 457.
- 41C. Huang, A. Kim, D. J. Chung, E. Park, N. P. Young, K. Jurkschat, H. Kim, P. S. Grant, ACS Appl. Mater. Interfaces 2018, 10, 15624.
- 42J.-Y. Li, G. Li, J. Zhang, Y.-X. Yin, F.-S. Yue, Q. Xu, Y.-G. Guo, ACS Appl. Mater. Interfaces 2019, 11, 4057.
- 43X. Zhou, Y. Liu, Y. Ren, T. Mu, X. Yin, C. Du, H. Huo, X. Cheng, P. Zuo, G. Yin, Adv. Funct. Mater. 2021, 31, 2101145.
- 44H. Dong, F. Zong, J. Wang, H. Ding, P. Wang, R. Song, N. Zhang, X. Cui, S. Li, J. Energy Chem. 2022, 72, 405.
- 45Y. Li, Y. Qian, J. Zhou, N. Lin, Y. Qian, Nano Res. 2022, 15, 230.
- 46M. Ma, H. Wang, L. Xiong, S. Huang, X. Li, X. Du, Carbon 2022, 186, 273.
- 47P. Wu, X. Guo, Z. Su, C. Liu, S. Chen, Z. Zheng, A. Liu, Chem. Eng. J. 2022, 446, 137354.
- 48G. Zhu, F. Zhang, X. Li, W. Luo, L. Li, H. Zhang, L. Wang, Y. Wang, W. Jiang, Angew. Chem., Int. Ed. 2019, 58, 6669.
- 49Z. Liu, D. Guan, Q. Yu, L. Xu, Z. Zhuang, T. Zhu, D. Zhao, L. Zhou, L. Mai, Energy Storage Mater. 2018, 13, 112.
- 50H. J. Kim, S. Choi, S. J. Lee, M. W. Seo, J. G. Lee, E. Deniz, Y. J. Lee, E. K. Kim, J. W. Choi, Nano Lett. 2016, 16, 282.
- 51S. Chen, L. Shen, P. A. van Aken, J. Maier, Y. Yu, Adv. Mater. 2017, 29, 1605650.
- 52H. Li, D. Wu, J. Wu, L.-Y. Dong, Y.-J. Zhu, X. Hu, Adv. Mater. 2017, 29, 1703548.
- 53P. Wu, X. Guo, Y. Zhong, C. Liu, S. Chen, Y. Wang, A. Liu, ACS Appl. Mater. Interfaces 2022, 5, 6373.
- 54Y. Huang, H. Yang, T. Xiong, D. Adekoya, W. Qiu, Z. Wang, S. Zhang, M. S. Balogun, Energy Storage Mater. 2020, 25, 41.