Exploring the Magnetic Properties of Individual Barcode Nanowires using Wide-Field Diamond Microscopy
Jungbae Yoon
Department of Physics, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorJun Hwan Moon
Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorJugyeong Chung
Department of Physics, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorYu Jin Kim
Institute for High Technology Materials and Devices, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorKihwan Kim
Department of Physics, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorHee Seong Kang
KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorYoo Sang Jeon
Center for Hydrogen∙Fuel Cell Research, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea
Search for more papers by this authorEunsoo Oh
Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorSun Hwa Lee
Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919 Republic of Korea
Search for more papers by this authorKihoon Han
BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841 Republic of Korea
Department of Neuroscience, Korea University College of Medicine, Seoul, 02841 Republic of Korea
Search for more papers by this authorDongmin Lee
BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841 Republic of Korea
Department of Anatomy, Korea University College of Medicine, Seoul, 02841 Republic of Korea
Search for more papers by this authorChul-Ho Lee
Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorCorresponding Author
Young Keun Kim
Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea
Institute for High Technology Materials and Devices, Korea University, Seoul, 02841 Republic of Korea
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Donghun Lee
Department of Physics, Korea University, Seoul, 02841 Republic of Korea
Email: [email protected]; [email protected]
Search for more papers by this authorJungbae Yoon
Department of Physics, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorJun Hwan Moon
Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorJugyeong Chung
Department of Physics, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorYu Jin Kim
Institute for High Technology Materials and Devices, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorKihwan Kim
Department of Physics, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorHee Seong Kang
KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorYoo Sang Jeon
Center for Hydrogen∙Fuel Cell Research, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea
Search for more papers by this authorEunsoo Oh
Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea
Search for more papers by this authorSun Hwa Lee
Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919 Republic of Korea
Search for more papers by this authorKihoon Han
BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841 Republic of Korea
Department of Neuroscience, Korea University College of Medicine, Seoul, 02841 Republic of Korea
Search for more papers by this authorDongmin Lee
BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841 Republic of Korea
Department of Anatomy, Korea University College of Medicine, Seoul, 02841 Republic of Korea
Search for more papers by this authorChul-Ho Lee
Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorCorresponding Author
Young Keun Kim
Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea
Institute for High Technology Materials and Devices, Korea University, Seoul, 02841 Republic of Korea
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Donghun Lee
Department of Physics, Korea University, Seoul, 02841 Republic of Korea
Email: [email protected]; [email protected]
Search for more papers by this authorAbstract
A barcode magnetic nanowire typically comprises a multilayer magnetic structure in a single body with more than one segment type. Interestingly, due to selective functionalization and novel interactions between the layers, it has attracted significant attention, particularly in bioengineering. However, analyzing the magnetic properties at the individual nanowire level remains challenging. Herein, the characterization of a single magnetic nanowire is investigated at room temperature under ambient conditions based on magnetic images obtained via wide-field quantum microscopy with nitrogen-vacancy centers in diamond. Consequently, critical magnetic properties of a single nanowire can be extracted, such as saturation magnetization and coercivity, by comparing the experimental result with that of micromagnetic simulation. This study opens up the possibility for a versatile in situ characterization method suited to individual magnetic nanowires.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202304129-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Buchter, J. Nagel, D. Rüffer, F. Xue, D. P. Weber, O. F. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, M. Kemmler, R. Kleiner, D. Koelle, D. Grundler, M. Poggio, Phys. Rev. Lett. 2013, 111, 067202.
- 2N. Shamsudhin, Y. Tao, J. Sort, B. Jang, C. L. Degen, B. J. Nelson, S. Pané, Small 2016, 12, 6363.
- 3A. Vasiliev, O. Volkova, E. Zvereva, M. Markina, npj Quantum Mater. 2018, 3, 18.
- 4K. S. Burch, D. Mandrus, J. G. Park, Nature 2018, 563, 47.
- 5K. Yang, S. H. Phark, Y. Bae, T. Esat, P. Willke, A. Ardavan, A. J. Heinrich, C. P. Lutz, Nat. Commun. 2021, 12, 993.
- 6S. Bochmann, A. Fernandez-Pacheco, M. Mačković, A. Neff, K. R. Siefermann, E. Spiecker, R. P. Cowburnb, J. Bachmann, RSC Adv. 2017, 7, 37627
- 7D. J. Lee, E. Kim, D. Kim, J. Park, S. Hong, ACS Nano 2013, 7, 6906.
- 8Y. P. Ivanov, A. Chuvilin, S. Lopatin, J. Kosel, ACS Nano 2016, 10, 5326.
- 9C. D. Keating, M. J. Natan, Adv. Mater. 2003, 15, 451.
- 10Y. S. Jeon, H. M. Shin, Y. J. Kim, D. Y. Nam, B. C. Park, E. Yoo, H. R. Kim, Y. K. Kim, ACS Appl. Mater. Interfaces 2019, 11, 23901.
- 11B. Jang, E. Gutman, N. Stucki, B. F. Seitz, P. D. Wendel-García, T. Newton, J. Pokki, O. Ergeneman, S. Pané, Y. Or, B. J. Nelson, Nano Lett. 2015, 15, 4829.
- 12X.-Z. Chen, B. Jang, D. Ahmed, C. Hu, C. De Marco, M. Hoop, F. Mushtaq, B. J. Nelson, S. Pané, Adv. Mater. 2018, 30, 1705061.
- 13M. Stano, O. Fruchart, Handbook of Magnetic Materials, Elsevier, Amsterdam 2018.
10.1016/bs.hmm.2018.08.002 Google Scholar
- 14L. Piraux, Appl. Sci. 2020, 10, 1832.
- 15A. Mukhtar, K. Wu, X. Cao, L. Gu, Nanotechnology 2020, 31, 433001.
- 16S. J. Hurst, E. K. Payne, L. Qin, C. A. Mirkin, Angew Chem Int Ed Engl 2006, 45, 2672.
- 17M. E. Pearce, J. B. Melanko, A. K. Salem, Pharm. Res. 2007, 24, 2335.
- 18J. Wang, J. Mater. Chem. 2008, 18, 4017.
- 19B. C. Park, Y. K. Kim, Met. Mater. Int. 2017, 23, 413.
- 20J. Cantu-Valle, E. Díaz Barriga-Castro, V. Vega, J. García, R. Mendoza-Reséndez, C. Luna, V. Manuel Prida, K. Nielsch, F. Mendoza-Santoyo, M. Jose-Yacaman, A. Ponce, J. Magn. Magn. Mater. 2015, 379, 294.
- 21S. Min, Y. S. Jeon, H. J. Jung, C. Khatua, N. Li, G. Bae, H. Choi, H. Hong, J. E. Shin, M. J. Ko, H. S. Ko, I. Jun, H. E. Fu, S. H. Kim, R. Thangam, J.-J. Song, V. P. Dravid, Y. K. Kim, H. Kang, Adv. Mater. 2020, 32, 2004300.
- 22S. Min, Y. S. Jeon, H. Choi, C. Khatua, N. Li, G. Bae, H. J. Jung, Y. Kim, H. Hong, J. Shin, M. J. Ko, H. S. Ko, T. Kim, J. H. Moon, J.-J. Song, V. P. Dravid, Y. K. Kim, H. Kang, Nano Lett. 2020, 20, 7272.
- 23T. Li, J. Li, K. I. Morozov, Z. Wu, T. Xu, I. Rozen, A. M. Leshansky, L. Li, J. Wang, Nano Lett. 2017, 17, 5092
- 24A. Y. Samardak, Y. S. Jeon, V. Y. Samardak, A. G. Kozlov, K. A. Rogachev, A. V. Ognev, E. Jeong, G. W. Kim, M. J. Ko, A. S. Samardak, Y. K. Kim, Small 2022, 18, 2203555.
- 25J. Escrig, Nanotechnology 2008, 19, 075713.
- 26W. Wernsdorfer, B. Doudin, D. Mailly, K. Hasselbach, A. Benoit, J. Meier, J.-Ph. Ansermet, B. Barbara, Phys Rev Lett 1996, 77, 1873.
- 27J. M. Garcıa, A. Thiaville, J. Miltat, J. Magn. Magn. Mater. 2002, 249, 163.
- 28C. Bran, E. Berganza, E. M. Palmero, J. A. Fernandez-Roldan, R. P. Del Real, L. Aballe, M. Foerster, A. Asenjo, A. Fraile Rodríguezc, M. Vazqueza, J. Mater. Chem. C 2016, 4, 978.
- 29E. Ortega, S. M. Reddy, I. Betancourt, S. Roughani, B. J. H. Stadler, A. Ponce, J. Mater. Chem. C 2017, 5, 7546.
- 30F. Casola, T. van der Sar, A. Yacoby, Nat. Rev. Mater. 2018, 3, 17088.
- 31M. Lee, B. Jang, J. Yoon, M. C. Mathpal, Y. Lee, C. Kim, S. Pane, B. J. Nelson, D. Lee, Nanotechnology 2018, 29, 405502.
- 32U. Celano, H. Zhong, F. Ciubotaru, L. Stoleriu, A. Stark, P. Rickhaus, F. Fávaro de Oliveira, M. Munsch, P. Favia, M. Korytov, P. Van Marcke, P. Maletinsky, C. Adelmann, P. van der Heide, Nano Lett. 2021, 21, 10409.
- 33S. C. Scholten, A. J. Healey, I. O. Robertson, G. J. Abrahams, D. A. Broadway, J.-P. Tetienne, J. Appl. Phys. 2021, 130, 150902.
- 34E. Levine, M. Turner, P. Kehayias, C. Hart, N. Langellier, R. Trubko, D. Glenn, R. Fu, R. Walsworth, Nanophotonics 2019, 8, 1945
- 35J.-P. Tetienne, N. Dontschuk, D. A. Broadway, A. Stacey, D. A. Simpson, L. C. L. Hollenberg, Sci. Adv. 2017, 3, 1602429.
- 36D. Le Sage, Nature 2013, 496, 486.
- 37M. Donahue, OOMMF User's Guide, Version 1.0, Natl Inst. of Standards and Technology, Gaithersburg, MD, USA, 1999.
10.6028/NIST.IR.6376 Google Scholar
- 38J.-P. Tetienne, D. A. Broadway, S. E. Lillie, N. Dontschuk, T. Teraji, L. T. Hall, A. Stacey, D. A. Simpson, L. C. L. Hollenberg, Sensors 2018, 18, 1290.
- 39S. Dunst, P. Tomancak, Genetics 2019, 211, 15.
- 40J. W. Goodman, Introduction to Fourier Optics, 3rd ed., Roberts and Co., Boston, MA, USA 2005.
- 41L. Sun, Y. Hao, C.-L. Chien, P. C. Searson, IBM J. Res. Dev. 2005, 49, 79.
- 42Y. Qu, M. Q. Arguilla, Q. Zhang, X. He, M. Dincă, J. Am. Chem. Soc. 2021, 143, 19551.
- 43P. Landeros, S. Allende, J. Escrig, E. Salcedo, D. Altbir, E. E. Vogel, Appl. Phys. Lett. 2007, 90, 102501.
- 44H. Yamano, S. Kawai, K. Kato, T. Kageura, M. Inaba, T. Okada, I. Higashimata, M. Haruyama, T. Tanii, K. Yamada, Jpn. J. Appl. Phys. 2017, 56, 04CK08.
- 45K.-M. C. Fu, C. Santori, P. E. Barclay, R. G. Beausoleil, Appl. Phys. Lett. 2010, 96, 121907.
- 46M. V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J. A. Garrido, Phys. Rev. B 2011, 83, 081304.