Synergistic Promotion of the Photocatalytic Preparation of Hydrogen Peroxide (H2O2) from Oxygen by Benzoxazine and Si─O─Ti Bond
Baoliang Liu
Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Search for more papers by this authorWenkai Zhang
College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249 P. R. China
School of Chemistry, University of Edinburgh, EH9 3FJ Edinburgh, UK
Search for more papers by this authorCorresponding Author
Qikun Zhang
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYintao Guan
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014 P. R. China
Search for more papers by this authorCorresponding Author
Zaijun Lu
Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorBaoliang Liu
Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Search for more papers by this authorWenkai Zhang
College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249 P. R. China
School of Chemistry, University of Edinburgh, EH9 3FJ Edinburgh, UK
Search for more papers by this authorCorresponding Author
Qikun Zhang
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYintao Guan
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014 P. R. China
Search for more papers by this authorCorresponding Author
Zaijun Lu
Key Laboratory for Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Hydrogen peroxide (H2O2) is considered one of the most important chemical products and has a promising future in photocatalytic preparation, which is green, pollution-free, and hardly consumes any non-renewable energy. This study involves the preparation of benzoxazine with Si─O bonds via the Mannich reaction, followed by co-hydrolysis to produce photocatalysts containing benzoxazine with Si─O─Ti bonds. In this study, a benzoxazine photocatalyst with Si─O─Ti bonds is synthesized and characterized using fourier transform infrared spectroscopy, nuclear magnetic resonance, and X-ray photoelectron spectroscopy. The size and elemental distribution of the nanoparticles are confirmed by transmission electron microscopy and scanning electron microscopy. The photocatalytic synthesis of H2O2 is tested using the titanium salt detection method, and the rate is found to be 7.28 µmol h−1. Additionally, the catalyst exhibits good hydrolysis resistance and could be reused multiple times. The use of benzoxazine with Si─O─Ti bonds presents a promising experimental and theoretical foundation for the industrial production of H2O2 through photocatalytic synthesis.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are openly available in null at https://doi.org/[doi], reference number 19930226.
Supporting Information
Filename | Description |
---|---|
smll202303907-sup-0001-SuppMat.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Cai, J. Huang, S. Wang, J. Iocozzia, Z. Sun, J. Sun, Y. Yang, Y. Lai, Z. Lin, Adv. Mater. 2019, 31, 1806314.
- 2L. Zhou, J. Feng, B. Qiu, Y. Zhou, J. Lei, M. Xing, L. Wang, Y. Zhou, Y. Liu, J. Zhang, Appl. Catal., B 2020, 267, 118396.
- 3C. Chu, Q. Li, W. Miao, H. Qin, X. Liu, D. Yao, S. Mao, Appl. Catal., B 2022, 314, 121485.
- 4Q. Chen, Chem. Eng. Process. 2008, 47, 787.
- 5Y. Zhang, C. Pan, G. Bian, J. Xu, Y. Dong, Y. Zhang, Y. Lou, W. Liu, Y. Zhu, Nat. Energy 2023, 8, 361.
- 6K. Li, Q. Ge, Y. Liu, L. Wang, K. Gong, J. Liu, L. Xie, W. Wang, X. Ruan, L. Zhang, Energy Environ. Sci. 2023, 16, 1135.
- 7Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Nat. Mater. 2019, 18, 985.
- 8Z. Chen, D. Yao, C. Chu, S. Mao, Chem. Eng. J. 2023, 451, 138489.
- 9C. Feng, L. Tang, Y. Deng, J. Wang, J. Luo, Y. Liu, X. Ou-yang, H. Yang, J. Yu, J. Wang, Adv. Funct. Mater. 2020, 30, 2001922.
- 10C. Krishnaraj, H. S. Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C. V. Chandran, S. Borgmans, S. M. J. Rogge, K. Leus, C. V. Stevens, J. A. Martens, V. Van Speybroeck, E. Breynaert, A. Thomas, P. Van Der Voort, J. Am. Chem. Soc. 2020, 142, 20107.
- 11Y. Lin, H. Kuang, S. Zhang, X. Zhang, G. Zhai, X. Lin, D. Xu, J. Jia, X. Li, J. Chen, CCS Chem. 2022, 4, 3482.
- 12C. Xia, L. Yuan, H. Song, C. Zhang, Z. Li, Y. Zou, J. Li, T. Bao, C. Yu, C. Liu, Small 2023, 19, 2300292.
- 13K. Li, Q. Ge, Y. Liu, L. Wang, K. Gong, J. Liu, L. Xie, W. Wang, X. Ruan, L. Zhang, Energy Environ. Sci. 2023, 16, 1135.
- 14Y. Isaka, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita, Angew. Chem., Int. Ed. 2019, 58, 5402.
- 15Q. Tian, L. Jing, S. Ye, J. Liu, R. Chen, C. H. Price, F. Fan, J. Liu, Small 2021, 17, 2103224.
- 16C. Zhao, X. Wang, Y. Yin, W. Tian, G. Zeng, H. Li, S. Ye, L. Wu, J. Liu, Angew. Chem., Int. Ed. 2023, 62, e202218318.
- 17Y.-X. Ye, J. Pan, Y. Shen, M. Shen, H. Yan, J. He, X. Yang, F. Zhu, J. Xu, J. He, G. Ouyang, Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2115666118.
- 18Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Nat. Mater. 2019, 18, 985.
- 19C. Chu, Q. Li, W. Miao, H. Qin, X. Liu, D. Yao, S. Mao, Appl. Catal., B 2022, 314, 121485.
- 20Y. Zheng, S. Chen, X. Yu, K. Li, X. Ni, L. Ye, Appl. Surf. Sci. 2022, 598, 153786.
- 21X. Wang, X. Yang, C. Zhao, Y. Pi, X. Li, Z. Jia, S. Zhou, J. Zhao, L. Wu, J. Liu, Angew. Chem., Int. Ed. 2023, 62, 202302829.
- 22I. Machado, C. Shaer, K. Hurdle, V. Calado, H. Ishida, Prog. Polym. Sci. 2021, 121, 101435.
- 23Z. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899.
- 24S. Pan, X. Liu, M. Guo, S. Yu, H. Huang, H. Fan, G. Li, J. Mater. Chem. 2015, 3, 11437.
- 25G. Moon, W. Kim, A. D. Bokare, N. Sung, W. Choi, Energy Environ. Sci. 2014, 7, 4023.
- 26C. Ponseca Jr., T. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, V. Sundstrom, J. Am. Chem. Soc. 2014, 136, 5189.
- 27T. Song, P. Zhang, T. Wang, A. Ali, H. Zeng, Nanoscale 2018, 10, 2275.
- 28M. Tang, W. Wang, D. Xu, Z. Wang, Ind. Eng. Chem. Res. 2016, 55, 12582.
- 29S. Gao, Y. Liu, S. Feng, Z. Lu, J. Mater. Chem. 2019, 7, 17498.
- 30J. Chrusciel, G. Janowska, M. Fejdys, J. Therm. Anal. Calorim. 2012, 109, 1049.
- 31T. Gunji, K. Toyota, K. Arai, Y. Abe, J. Sol-Gel Sci. Technol. 1997, 10, 139.
- 32J. Zhao, B. Wu, X. Huang, Y. Sun, Z. Zhao, M. Ye, X. Wen, Adv. Sci. 2022, 9, 2201678.
- 33A. Shchukarev, D. Korolkov, Cent. Eur. J. Chem. 2004, 2, 347.
- 34W. Wang, Z. Yang, Z. Wang, H. Lin, J. Wang, M. Liao, Y. Zeng, B. Yan, J. Ye, Sol. RRL 2020, 4, 1900490.
- 35H. Nohira, W. Tsai, W. Besling, E. Young, J. Petry, T. Conard, W. Vandervorst, S. Gendt, M. Heyns, J. Maes, M. Tuominen, J. Non-Cryst. Solids 2002, 303, 83.
- 36T. Sugama, C. Taylor, Mater. Lett. 1991, 11, 187.
- 37H. Kobayashi, J. Taylor, Y. Mitsuka, N. Ogiwara, T. Yamamoto, T. Toriyama, S. Matsumura, H. Kitagawa, Chem. Sci. 2019, 10, 3289.
- 38C. Feng, L. Tang, Y. Deng, J. Wang, J. Luo, Y. Liu, X. Yang, H. Yang, J. Yu, J. Wang, Adv. Funct. Mater. 2020, 30, 2001922.
- 39Y. Xia, Z. Tian, T. Heil, A. Meng, B. Cheng, S. Cao, J. Yu, M. Antonietti, Joule 2019, 3, 2792.
- 40Z. Sun, W. Fang, L. Zhao, H. Chen, X. He, W. Li, P. Tian, Z. Huang, Environ. Int. 2019, 130, 104898.
- 41Q. Wu, H. Xiong, Y. Peng, J. Kang, G. Huang, X. Ren, J. Wu, ACS Appl. Mater. Interfaces 2019, 11, 19534.
- 42M. Tang, P. Zheng, K. Wang, Y. Qin, Y. Jiang, Y. Cheng, Z. Li, L. Wu, J. Mater. Chem. A 2019, 7, 27278.
- 43L. Liu, M. Y. Gao, H. Yang, X. Wang, X. Li, A. I. Cooper, J. Am. Chem. Soc. 2021, 143, 19287.