Electrochemical Enhancement of Lithium-Ion Diffusion in Polypyrrole-Modified Sulfurized Polyacrylonitrile Nanotubes for Solid-to-Solid Free-Standing Lithium–Sulfur Cathodes
Yikun Yi
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorFeng Hai
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorJingyu Guo
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorXin Gao
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorWenting Chen
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorXiaolu Tian
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorWei Tang
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorWeibo Hua
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorCorresponding Author
Mingtao Li
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Xi'an Jiaotong University Suzhou Institute, No. 99 Renai Road, Suzhou Industrial Park, Jiang Su, 215000 China
E-mail: [email protected]
Search for more papers by this authorYikun Yi
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorFeng Hai
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorJingyu Guo
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorXin Gao
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorWenting Chen
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorXiaolu Tian
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorWei Tang
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorWeibo Hua
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Search for more papers by this authorCorresponding Author
Mingtao Li
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shannxi, 710049 China
Xi'an Jiaotong University Suzhou Institute, No. 99 Renai Road, Suzhou Industrial Park, Jiang Su, 215000 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The energy density of lithium-sulfurized polyacrylonitrile (Li-SPAN) batteries has chronically suffered from low sulfur content. Although a free-standing electrode can significantly reduce noncapacity mass contribution, the slow bulk reaction kinetics still constrain the electrochemical performance. In this regard, a novel electrochemically active additive, polypyrrole (PPy), is introduced to construct PAN nanotubes as a sulfur carrier. This hollow channel greatly facilitates charge transport within the electrode and increases the sulfur content. Both electrochemical tests and simulations show that the SPANPPy-1% cathode possesses a larger lithium-ion diffusion coefficient and a more homogeneous phase interface than the SPAN cathode. Consequently, significantly improved capabilities and rate properties are achieved, as well as decent exportations under high-sulfur-loading or lean-electrolyte conditions. In-situ and semi-situ characterizations are further performed to demonstrate the nucleation growth of lithium sulfide and the evolution of the electrode surface structure. This type of electrochemically active additive provides a well-supported implementation of high-energy-density Li-S batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303781-sup-0001-SuppMat.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z.-X. Chen, M. Zhao, L.-P. Hou, X.-Q. Zhang, B.-Q. Li, J.-Q. Huang, Adv Mater 2022, 34, 2201555.
- 2R. Deng, M. Wang, H. Yu, S. Luo, J. Li, F. Chu, B. Liu, F. Wu, Energy Environ. Mater. 2022, 5, 777.
- 3Z. Pan, D. J. L. Brett, G. He, I. P. Parkin, Adv. Energy Mater. 2022, 12, 2103483.
- 4Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, G. Wang, Adv Mater 2021, 33, 2003666.
- 5G. Zhou, H. Chen, Y. Cui, Nat. Energy 2022, 7, 312.
- 6Y. Xiao, Y. Xiang, S. Guo, J. Wang, Y. Ouyang, D. Li, Q. Zeng, W. Gong, L. Gan, Q. Zhang, S. Huang, Energy Storage Mater. 2022, 51, 882.
- 7Z. Liang, J. Shen, X. Xu, F. Li, J. Liu, B. Yuan, Y. Yu, M. Zhu, Adv Mater 2022, 34, 2200102.
- 8Z. Shen, X. Jin, J. Tian, M. Li, Y. Yuan, S. Zhang, S. Fang, X. Fan, W. Xu, H. Lu, J. Lu, H. Zhang, Nat. Catal. 2022, 5, 555.
- 9Y. Yi, H. Li, H. Chang, P. Yang, X. Tian, P. Liu, L. Qu, M. Li, B. Yang, H. Li, Chemistry 2019, 25, 8112.
- 10M. Zhao, B.-Q. Li, H.-J. Peng, H. Yuan, J.-Y. Wei, J.-Q. Huang, Angew Chem Int Ed Engl 2020, 59, 12636.
- 11X. Li, L. Yuan, D. Liu, J. Xiang, Z. Li, Y. Huang, Small 2022, 18, 2106970.
- 12Y. Yi, F. Hai, J. Guo, X. Tian, S. Zheng, Z. Wu, T. Wang, M. Li, Batteries. 2023, 9, 27.
- 13X. Zhang, H. Ma, J. Liu, J. Chen, H. Lu, Y. Huang, J. Wang, Nano Res. 2023.
- 14M. S. Ahmed, S. Lee, M. Agostini, M.-G. Jeong, H.-G. Jung, J. Ming, Y.-K. Sun, J. Kim, J.-Y. Hwang, Adv. Sci. 2021, 8, 2101123.
- 15H. Yang, J. Chen, J. Yang, J. Wang, Angew. Chem., Int. Ed. 2020, 59, 7306.
- 16B. He, Z. Rao, Z. Cheng, D. Liu, D. He, J. Chen, Z. Miao, L. Yuan, Z. Li, Y. Huang, Adv. Energy Mater. 2021, 11, 2003690.
- 17T. Wang, Q. Zhang, J. Zhong, M. Chen, H. Deng, J. Cao, L. Wang, L. Peng, J. Zhu, B. Lu, Adv. Energy Mater. 2021, 11, 2100448.
- 18X. Wang, Y. Qian, L. Wang, H. Yang, H. Li, Y. Zhao, T. Liu, Adv. Funct. Mater. 2019, 29, 1902929.
- 19C. F. J. Kuo, M. A. Weret, H. Y. Hung, M. C. Tsai, C. J. Huang, W. N. Su, B. J. Hwang, J. Power Sources 2019, 412, 670.
- 20A. Abdul Razzaq, X. Yuan, Y. Chen, J. Hu, Q. Mu, Y. Ma, X. Zhao, L. Miao, J.-H. Ahn, Y. Peng, Z. Deng, J. Mater. Chem. A 2020, 8, 1298.
- 21A. Abdul Razzaq, G. Chen, X. Zhao, X. Yuan, J. Hu, Z. Li, Y. Chen, J. Xu, R. Shah, J. Zhong, Y. Peng, Z. Deng, J. Energy Chem.. 2021, 61, 170.
- 22H. Dong, S. Qi, L. Wang, X. Chen, Y. Xiao, Y. Wang, B. Sun, G. Wang, S. Chen, Small n/a, 2300843.
- 23C.-X. Zhao, X.-Y. Li, M. Zhao, Z.-X. Chen, Y.-W. Song, W.-J. Chen, J.-N. Liu, B. Wang, X.-Q. Zhang, C.-M. Chen, B.-Q. Li, J.-Q. Huang, Q. Zhang, J. Am. Chem. Soc. 2021, 143, 19865.
- 24J. Gu, C. Dong, C. Zhou, C. Shen, Y. Pi, X. Xu, Sci. China Mater. 2023, 66, 2181.
- 25L. Huang, T. Guan, H. Su, Y. Zhong, F. Cao, Y. Zhang, X. Xia, X. Wang, N. Bao, J. Tu, Angew. Chem., Int. Ed. 2022, 61, e202212151.
- 26G. Wen, Y. Sui, X. Zhang, J. Li, Z. Zhang, S. Zhong, S. Tang, L. Wu, J. Colloid Interface Sci. 2021, 589, 208.
- 27Y. Zhang, X. Zhang, S. R. P. Silva, B. Ding, P. Zhang, G. Shao, Adv. Sci. 2022, 9, 2103879.
- 28W. Chang, J. Qu, W. Li, Y. H. Liu, X. Z. Zhai, H. J. Liu, Y. Kang, Z. Z. Yu, Small 2021, 17, 2101857.
- 29X. Zhang, G. Hu, K. Chen, L. Shen, R. Xiao, P. Tang, C. Yan, H.-M. Cheng, Z. Sun, F. Li, Energy Storage Mater. 2022, 45, 1144.
- 30W. Wei, J. Li, D. Liu, C. Pan, P. Liu, Energy Fuels 2020, 34, 7676.
- 31K. Wang, T. Zhao, N. Zhang, T. Feng, L. Li, F. Wu, R. Chen, Nanoscale 2021, 13, 16690.
- 32F. Li, M. R. Kaiser, J. Ma, Z. Guo, H. Liu, J. Wang, Energy Storage Mater. 2018, 13, 312.
- 33Y. Liu, A. K. Haridas, Y. Lee, K.-K. Cho, J.-H. Ahn, Appl. Surf. Sci. 2019, 472, 135.
- 34S. Wang, B. Lu, D. Cheng, Z. Wu, S. Feng, M. Zhang, W. Li, Q. Miao, M. Patel, J. Feng, E. Hopkins, J. Zhou, S. Parab, B. Bhamwala, B. Liaw, Y. S. Meng, P. Liu, J. Am. Chem. Soc. 2023, 145, 9624.
- 35R. He, Y. Li, S. Wei, H. Liu, S. Zhang, N. Han, H. Liu, X. Wang, X. Zhang, J. Alloys Compd. 2022, 919, 165838.
- 36Z.-Q. Jin, Y.-G. Liu, W.-K. Wang, A.-B. Wang, B.-W. Hu, M. Shen, T. Gao, P.-C. Zhao, Y.-S. Yang, Energy Storage Mater. 2018, 14, 272.
- 37Y. Hu, B. Li, X. Jiao, C. Zhang, X. Dai, J. Song, Adv. Funct. Mater. 2018, 28, 1801010.
- 38L. Zhang, R. Wang, Z. Liu, J. Wan, S. Zhang, S. Wang, K. Hua, X. Liu, X. Zhou, X. Luo, X. Zhang, M. Cao, H. Kang, C. Zhang, Z. Guo, Adv. Mater. 2023, 35, 2210082.
- 39W. Xue, W. Xu, W. Wang, G. Gao, L. Wang, Compos. Commun. 2022, 30, 101078.
- 40H. Li, W. Xue, L. Wang, T. Liu, ACS Appl. Mater. Interfaces 2021, 13, 25002.
- 41H. Liu, R. He, Y. Li, Y. Jin, H. Liu, X. Zhang, J. Electroanal. Chem. 2023, 939, 117465.
- 42S. Wei, L. Ma, K. E. Hendrickson, Z. Tu, L. A. Archer, J. Am. Chem. Soc. 2015, 137, 12143.
- 43Y. Yi, W. Huang, X. Tian, B. Fang, Z. Wu, S. Zheng, M. Li, H. Ma, ACS Appl. Mater. Interfaces 2021, 13, 59983.
- 44L. Qu, P. Liu, Y. Yi, T. Wang, P. Yang, X. Tian, M. Li, B. Yang, S. Dai, ChemSusChem 2019, 12, 213.
- 45Q. Wang, M. Zhu, G. Chen, N. Dudko, Y. Li, H. Liu, L. Shi, G. Wu, D. Zhang, Adv. Mater. 2022, 34, 2109658.
- 46C. Wang, J. Liang, S. Hwang, X. Li, Y. Zhao, K. Adair, C. Zhao, X. Li, S. Deng, X. Lin, X. Yang, R. Li, H. Huang, L. Zhang, S. Lu, D. Su, X. Sun, Nano Energy 2020, 72, 104686.
- 47X. Yang, A. L. Rogach, Adv. Energy Mater. 2019, 9, 1900747.
- 48X. Chen, H. Ji, Z. Rao, L. Yuan, Y. Shen, H. Xu, Z. Li, Y. Huang, Adv. Energy Mater. 2022, 12, 2102774.