Design of High-Capacity MoS3 Decorated Nitrogen Doped Carbon Coated Cu2S Electrode Structures with Dual Heterogenous Interfaces for Outstanding Sodium-Ion Storage
Corresponding Author
Yanli Zhou
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQiming Li
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorQi Han
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorLanling Zhao
School of Physics, Shandong University, Jinan, 250100 China
Search for more papers by this authorYan Liu
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorYifei Wang
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorZhiqi Li
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorCaifu Dong
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorXueqin Sun
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorJian Yang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Search for more papers by this authorXiaoyu Zhang
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, Shandong, 265503 China
Search for more papers by this authorCorresponding Author
Fuyi Jiang
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yanli Zhou
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQiming Li
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorQi Han
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorLanling Zhao
School of Physics, Shandong University, Jinan, 250100 China
Search for more papers by this authorYan Liu
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorYifei Wang
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorZhiqi Li
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorCaifu Dong
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorXueqin Sun
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Search for more papers by this authorJian Yang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Search for more papers by this authorXiaoyu Zhang
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, Shandong, 265503 China
Search for more papers by this authorCorresponding Author
Fuyi Jiang
School of Environment and Material Engineering, Yantai University, Yantai, 264005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The hierarchical Cu2S@NC@MoS3 heterostructures have been firstly constructed by the high-capacity MoS3 and high-conductive N-doped carbon to co-decorate the Cu2S hollow nanospheres. During the heterostructure, the middle N-doped carbon layer as the linker facilitates the uniform deposition of MoS3 and enhances the structural stability and electronic conductivity. The popular hollow/porous structures largely restrain the big volume changes of active materials. Due to the cooperative effect of three components, the new Cu2S@NC@MoS3 heterostructures with dual heterogenous interfaces and small voltage hysteresis for sodium ion storage display a high charge capacity (545 mAh g−1 for 200 cycles at 0.5 A g−1), excellent rate capability (424 mAh g−1 at 15 A g−1) and ultra-long cyclic life (491 mAh g−1 for 2000 cycles at 3 A g−1). Except for the performance test, the reaction mechanism, kinetics analysis, and theoretical calculation have been performed to explain the reason of excellent electrochemical performance of Cu2S@NC@MoS3. The rich active sites and rapid Na+ diffusion kinetics of this ternary heterostructure is beneficial to the high efficient sodium storage. The assembled full cell matched with Na3V2(PO4)3@rGO cathode likewise displays remarkable electrochemical properties. The outstanding sodium storage performances of Cu2S@NC@MoS3 heterostructures indicate the potential applications in energy storage fields.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303742-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Chayambuka, G. Mulder, D. L. Danilov, P. H. L. Notten, Adv. Energy Mater. 2020, 10, 2001310.
- 2N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.
- 3H. Pan, Y.-S. Hu, L. Chen, Energy Environ. Sci. 2013, 6, 2338.
- 4Z. Ali, T. Zhang, M. Asif, L. Zhao, Y. Yu, Y. Hou, Mater. Today 2020, 35, 131.
- 5R. Li, G. Zhang, P. Zhang, Y. Li, C. He, X. Ren, H. Mi, Chem. Eng. J. 2022, 450, 138019.
- 6Y. Xiao, S. H. Lee, Y.-K. Sun, Adv. Energy Mater. 2017, 7, 1601329.
- 7J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, ACS Nano 2015, 9, 3837.
- 8Y. Zhou, Q. Han, Y. Liu, Y. Wang, F. Jiang, N. Wang, Z. Bai, S. Dou, Energy Storage Mater. 2022, 50, 308.
- 9G. Tian, C. Huang, X. Luo, Z. Zhao, Y. Peng, Y. Gao, N. Tang, S. Dsoke, Chemistry 2021, 27, 13774.
- 10Y. Xiao, D. Su, X. Wang, S. Wu, L. Zhou, Y. Shi, S. Fang, H.-M. Cheng, F. Li, Adv. Energy Mater. 2018, 8, 1800930.
- 11H. Li, K. Wang, S. Cheng, K. Jiang, ACS Appl. Mater. Interfaces 2018, 10, 8016.
- 12Y. Wang, X. Feng, Y. Xiong, S. Stoupin, R. Huang, M. Zhao, M. Xu, P. Zhang, J. Zhao, H. D. Abruña, ACS Appl. Mater. Interfaces 2020, 12, 17396.
- 13Q. Zhao, Y. Lu, J. Chen, Adv. Energy Mater. 2017, 7, 1601792.
- 14N. R. Kim, J. Choi, H. J. Yoon, M. E. Lee, S. U. Son, H.-J. Jin, Y. S. Yun, ACS Sustainable Chem. Eng. 2017, 5, 9802.
- 15Y. Qiu, F. Fu, M. Hu, P. K. Shen, J. Zhu, Chem. Eng. J. 2023, 454, 140402.
- 16K. Guo, X. Wang, J. Fan, Y. Min, Q. Xu, Chem. Eng. J. 2022, 430, 132705.
- 17J. Wang, J. Okabe, K. Urita, I. Moriguchi, M. Wei, J. Electroanal. Chem. 2020, 874, 114523.
- 18J. Cai, B. Reinhart, P. Eng, Y. Liu, C.-J. Sun, H. Zhou, Y. Ren, X. Meng, Carbon 2020, 170, 430.
- 19P. Du, L. Cao, B. Zhang, C. Wang, Z. Xiao, J. Zhang, D. Wang, X. Ou, Renewable Sustainable Energy Rev. 2021, 151, 111640.
- 20B. Yu, Y. Ji, X. Hu, Y. Liu, J. Yuan, S. Lei, G. Zhong, Z. Weng, H. Zhan, Z. Wen, Chem. Eng. J. 2022, 430, 132993.
- 21L. Cao, X. Liang, X. Ou, X. Yang, Y. Li, C. Yang, Z. Lin, M. Liu, Adv. Funct. Mater. 2020, 30, 1910732.
- 22N. Shi, B. Xi, M. Huang, X. Ma, H. Li, J. Feng, S. Xiong, Small 2020, 16, 2000952.
- 23R. Fan, C. Zhao, J. Ma, S. Lei, G. Liang, T. He, G. Zhu, Y. Cai, J. Mater. Chem. A 2022, 10, 939.
- 24J. Cheng, Z. Niu, Z. Zhao, X. Pei, S. Zhang, H. Wang, D. Li, Z. Guo, Adv. Energy Mater. 2023, 13, 2203248.
- 25Y. Fang, D. Luan, Y. Chen, S. Gao, X. W. Lou, Angew. Chem., Int. Ed. 2020, 59, 7178.
- 26Q. Han, Y. Zhou, R. Du, B. Xiao, J. Cheng, M. Zhang, C. Dong, X. Sun, F. Jiang, J. Yang, J. Mater. Chem. A 2021, 9, 14013.
- 27H. Ye, L. Wang, S. Deng, X. Zeng, K. Nie, P. N. Duchesne, B. Wang, S. Liu, J. Zhou, F. Zhao, N. Han, P. Zhang, J. Zhong, X. Sun, Y. Li, Y. Li, J. Lu, Adv. Energy Mater. 2017, 7, 1601602.
- 28M. Ma, S. Zhang, L. Wang, Y. Yao, R. Shao, L. Shen, L. Yu, J. Dai, Y. Jiang, X. Cheng, Y. Wu, X. Wu, X. Yao, Q. Zhang, Y. Yu, Adv. Mater. 2021, 33, 2106232.
- 29Q. Peng, S. Zhang, H. Yang, B. Sheng, R. Xu, Q. Wang, Y. Yu, ACS Nano 2020, 14, 6024.
- 30Y. Zhou, Y. Liu, M. Zhang, Q. Han, Y. Wang, X. Sun, X. Zhang, C. Dong, J. Sun, Z. Tang, F. Jiang, Chem. Eng. J. 2022, 433, 133778.
- 31Y. Zhou, M. Zhang, Q. Han, Y. Liu, Y. Wang, X. Sun, X. Zhang, C. Dong, F. Jiang, Chem. Eng. J. 2022, 428, 131113.
- 32W. Zhao, X. Wang, X. Ma, L. Yue, Y. Ren, T. Li, J. Xia, L. Zhang, Q. Liu, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. M. Asiri, X. Sun, J. Mater. Chem. A 2021, 9, 27615.
- 33Zulkifli, S. L., G. Alfaza, A. N. Fahri, B. Sambandam, V. Mathew, S. Lee, J. Park, M. Song, J. Lee, J. Y. Hwang, J. Kim, Mater. Today Sustain. 2023, 22, 100348.
10.1016/j.mtsust.2023.100348 Google Scholar
- 34U. Chang, J. T. Lee, J.-M. Yun, B. Lee, S. W. Lee, H.-I. Joh, K. Eom, T. F. Fuller, ACS Nano 2019, 13, 1490.
- 35X.-Y. Fan, J. Han, Y.-L. Ding, Y.-P. Deng, D. Luo, X. Zeng, Z. Jiang, L. Gou, D.-L. Li, Z. Chen, Adv. Energy Mater. 2019, 9, 1970111.
10.1002/aenm.201970111 Google Scholar
- 36Q. Chen, M. Ren, H. Xu, W. Liu, J. Hei, L. Su, L. Wang, ChemElectroChem 2018, 5, 2135.
- 37M. Krengel, A.-L. Hansen, M. Kaus, S. Indris, N. Wolff, L. Kienle, D. Westfal, W. Bensch, ACS Appl. Mater. Interfaces 2017, 9, 21283.
- 38L. Wu, J. Gao, Z. Qin, Y. Sun, R. Tian, Q. Zhang, Y. Gao, J. Power Sources 2020, 479, 228518.
- 39J. Wang, H. Zhou, J. Nanda, P. V. Braun, Chem. Mater. 2015, 27, 2803.
- 40K. Jiang, X. Tan, S. Zhai, K. Cadien, Z. Li, Nano Res. 2021, 14, 4664.
- 41Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, M. Yan, Nano Energy 2014, 5, 60.
- 42Y. Zuo, H. Shang, J. Hao, J. Song, F. Ning, K. Zhang, L. He, D. Xia, J. Am. Chem. Soc. 2023, 145, 5174.
- 43F. Wang, S.-W. Kim, D.-H. Seo, K. Kang, L. Wang, D. Su, J. J. Vajo, J. Wang, J. Graetz, Nat. Commun. 2015, 6, 6668.
- 44Z. Yang, J. Zhong, J. Feng, J. Li, F. Kang, Chem. Eng. J. 2022, 427, 130723.
- 45C. Zhou, S. Wan, Y. Chen, L. Fu, H. Chen, C. Kang, Q. Liu, J. Power Sources 2021, 509, 230401.
- 46D. Yu, M. Li, T. Yu, C. Wang, Y. Zeng, X. Hu, G. Chen, G. Yang, F. Du, J. Mater. Chem. A 2019, 7, 10619.
- 47J. Li, D. Yan, T. Lu, W. Qin, Y. Yao, L. Pan, ACS Appl. Mater. Interfaces 2017, 9, 2309.
- 48Y. Fang, B. Y. Guan, D. Luan, X. W. Lou, Angew. Chem., Int. Ed. 2019, 58, 7739.
- 49H. Li, H. Zhang, T. Diemant, R. Jürgen Behm, D. Geiger, U. Kaiser, A. Varzi, S. Passerini, Small Struct. 2021, 2, 2100035.
- 50L. David, R. Bhandavat, G. Singh, ACS Nano 2014, 8, 1759.
- 51L. David, G. Singh, J. Phys. Chem. C 2014, 118, 28401.
- 52D. M. Soares, G. Singh, Nanotechnology 2020, 31, 145403.
- 53S. Wang, F. Cao, Y. Li, Z. Zhang, D. Zhou, Y. Yang, Z. Tang, Adv. Sci. 2019, 6, 1900028.
- 54Y.-Y. Sun, Y. Li, L.-M. Sheng, T.-L. Lv, R. Guo, T.-R. Yang, Q.-S. Zhang, J.-Y. Xie, Chem. Eng. J. 2021, 414, 128732.
- 55W. Zhao, L. Gao, L. Yue, X. Wang, Q. Liu, Y. Luo, T. Li, X. Shi, A. M. Asiri, X. Sun, J. Mater. Chem. A 2021, 9, 6402.
- 56Z. Zhao, K. Li, C. Li, X. Pei, S. Zhang, Z. Liu, X. Du, D. Li, ACS Appl. Mater. Interfaces 2023, 15, 4011.
- 57X. Liu, Q. Cheng, W. Zhong, Q. Deng, C. Yang, Y. Liu, J. Hu, C. Yang, Chem. Eng. J. 2023, 451, 138645.
- 58Y. Xu, Q. Wei, C. Xu, Q. Li, Q. An, P. Zhang, J. Sheng, L. Zhou, L. Mai, Adv. Energy Mater. 2016, 6, 1600389.
- 59G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 60P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 61G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.