Multifunctional Asymmetric Bacterial Cellulose Membrane with Enhanced Anti-Bacterial and Anti-Inflammatory Activities for Promoting Infected Wound Healing
Fengping Wang
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
College of Traditional Chinese Medicine, Weifang Medical University, Weifang, Shandong, P. R. China
Search for more papers by this authorMeiyan Sun
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
Search for more papers by this authorDongmei Li
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
Search for more papers by this authorXiaotong Qin
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
Search for more papers by this authorYuting Liao
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
Search for more papers by this authorXiaozhi Liu
Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, Tianjin, P. R. China
Search for more papers by this authorShiru Jia
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
Search for more papers by this authorCorresponding Author
Yanyan Xie
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Cheng Zhong
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorFengping Wang
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
College of Traditional Chinese Medicine, Weifang Medical University, Weifang, Shandong, P. R. China
Search for more papers by this authorMeiyan Sun
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
Search for more papers by this authorDongmei Li
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
Search for more papers by this authorXiaotong Qin
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
Search for more papers by this authorYuting Liao
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
Search for more papers by this authorXiaozhi Liu
Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, Tianjin, P. R. China
Search for more papers by this authorShiru Jia
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
Search for more papers by this authorCorresponding Author
Yanyan Xie
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Cheng Zhong
State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, P. R. China
Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
An asymmetric wound dressing acts as a skin-like structure serves as a protective barrier between a wound and its surroundings. It allows for the absorption of tissue fluids and the release of active substances at the wound site, thus speeding up the healing process. However, the production of such wound dressings requires the acquisition of specialized tools, expensive polymers, and solvents that contain harmful byproducts. In this study, an asymmetric bacterial cellulose (ABC) wound dressing using starch as a porogen has been developed. By incorporating silver-metal organic frameworks (Ag-MOF) and curcumin into the ABC membrane, the wound dressing gains antioxidant, reactive oxygen species (ROS) scavenging, and anti-bacterial activities. Compared to BC-based wound dressings, this dressing promotes efficient dissolution and controlled release of curcumin and silver ions. In a full-thickness skin defect model, wound dressing not only inhibits the growth of bacteria on infected wounds but also regulates the release of curcumin to reduce inflammation and promote the production of epithelium, blood vessels, and collagen. Consequently, this dressing provides superior wound treatment compared to BC-based dressing.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303591-sup-0001-SuppMat.pdf628.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Y. Chou, D. L. Ma, C. H. Leung, C. C. Chiu, T. C. Hour, H. D. Wang, Oxid Med Cell Longev 2020, 2020, 4946902.
- 2L. Yildirimer, N. T. K. Thanh, A. M. Seifalian, Trends Biotechnol. 2012, 30, 638.
- 3A. den Dekker, F. M. Davis, S. L. Kunkel, K. A. Gallagher, Transl. Res. 2019, 204, 39.
- 4Q. K. Zeng, X. L. Qi, G. Y. Shi, M. Zhang, H. Haick, ACS Nano 2022, 16, 1708.
- 5P. I. Morgado, A. Aguiar-Ricardo, I. J. Correia, J. Membr. Sci. 2015, 490, 139.
- 6R. Xu, G. Luo, H. Xia, W. He, J. Zhao, B. Liu, J. Tan, J. Zhou, D. Liu, Y. Wang, Z. Yao, R. Zhan, S. Yang, J. Wu, Biomaterials 2015, 40, 1.
- 7S. G. Priya, A. Gupta, E. Jain, J. Sarkar, A. Damania, P. R. Jagdale, B. P. Chaudhari, K. C. Gupta, A. Kumar, ACS Appl. Mater. Interfaces 2016, 8, 15145.
- 8M. Shie Karizmeh, S. A. Poursamar, A. Kefayat, Z. Farahbakhsh, M. Rafienia, Biomater Adv 2022, 135, 112667.
10.1016/j.msec.2022.112667 Google Scholar
- 9Y. Chen, L. Yan, T. Yuan, Q. Zhang, H. Fan, J. Appl. Polym. Sci. 2011, 119, 1532.
- 10F. Mi, Y. Wu, S. Shyu, J. Schoung, Y. Huang, Y. Tsai, J. Hao, J. Biomed. Mater. Res., Part A 2002, 59, 438.
- 11M. Temtem, T. Casimiro, A. Aguiar-Ricardo, J. Membr. Sci. 2006, 283, 244.
- 12D. Sundaramurthi, U. M. Krishnan, S. Sethuraman, Polym. Rev. 2014, 54, 348.
- 13L. Koch, A. Deiwick, S. Schlie, S. Michael, M. Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. M. Vogt, Biotechnol. Bioeng. 2012, 109, 1855.
- 14S. P. Miguel, A. F. Moreira, I. J. Correia, Int. J. Biol. Macromol. 2019, 127, 460.
- 15C.-N. Wu, S.-C. Fuh, S.-P. Lin, Y.-Y. Lin, H.-Y. Chen, J.-M. Liu, K.-C. Cheng, Biomacromolecules 2018, 19, 544.
- 16Z. Yang, F. Feng, W. Jiang, L. Ma, M. Liu, K. Li, Y. Wan, H. Ao, Biomater Adv 2021, 134, 112591.
- 17S. Ye, L. Jiang, J. Wu, C. Su, C. Huang, X. Liu, W. Shao, ACS Appl. Mater. Interfaces 2018, 10, 5862.
- 18F.-P. Wang, B. Li, M.-Y. Sun, F. Wahid, H.-M. Zhang, S.-J. Wang, Y.-Y. Xie, S.-R. Jia, C. Zhong, Int. J. Biol. Macromol. 2022, 195, 59.
- 19J. Chen, F. Wang, Q. Liu, J. Du, Chem. Commun. 2014, 50, 14482.
- 20Y. Qing, L. Cheng, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, Y. Qin, Int. J. Nanomed. 2018, 13, 3311.
- 21P. V. AshaRani, G. Low Kah Mun, M. P. Hande, S. Valiyaveettil, ACS Nano 2009, 3, 279.
- 22P. Anand, A. B. Kunnumakkara, R. A. Newman, B. B. Aggarwal, Mol. Pharmaceutic 2007, 4, 807.
- 23X. Han, H. G. Godfrey, L. Briggs, A. J. Davies, Y. Cheng, L. L. Daemen, A. M. Sheveleva, F. Tuna, E. J. McInnes, J. Sun, Nat. Mater. 2018, 17, 691.
- 24F. Zhong, Y. Li, A. M. Ibáñez, M. H. Oh, K. S. McKenzie, C. Shoemaker, Food Hydrocolloids 2009, 23, 406.
- 25Y. Li, S. Wang, R. Huang, Z. Huang, B. Hu, W. Zheng, G. Yang, X. Jiang, Biomacromolecules 2015, 16, 780.
- 26M. Fursatz, M. Skog, P. Sivler, E. Palm, C. Aronsson, A. Skallberg, G. Greczynski, H. Khalaf, T. Bengtsson, D. Aili, Biomed. Mater. 2018, 13, 025014.
- 27M. C. I. Mohd Amin, N. Ahmad, N. Halib, I. Ahmad, Carbohydr. Polym. 2012, 88, 465.
- 28F. Babayekhorasani, M. Hosseini, P. T. Spicer, Biomacromolecules 2022, 23, 2404.
- 29S. M. Andrabi, P. Singh, S. Majumder, A. Kumar, Chem. Eng. J. 2021, 423, 130219.
- 30W. Sajjad, F. He, M. W. Ullah, M. Ikram, S. M. Shah, R. Khan, T. Khan, A. Khalid, G. Yang, F. Wahid, Front. Bioeng Biotechnol. 2020, 8, 553037.
- 31S. F. Seyedpour, A. Rahimpour, G. Najafpour, J. Membr. Sci. 2019, 573, 257.
- 32S. Shakya, Y. He, X. Ren, T. Guo, A. Maharjan, T. Luo, T. Wang, R. Dhakhwa, B. Regmi, H. Li, R. Gref, J. Zhang, Small 2019, 15, 1901065.
- 33T. W. Lee, S. E. Lee, Y. G. Jeong, ACS Appl. Mater. Interfaces 2016, 8, 13123.
- 34M. H. Leung, D.-T. Pham, S. F. Lincoln, T. W. Kee, Phys. Chem. Chem. Phys. 2012, 14, 13580.
- 35R. Pallikkavil, M. B. Ummathur, S. Sreedharan, K. Krishnankutty, Main Group Met. Chem. 2013, 36, 123.
- 36M. Kim, H. Lee, M. Kim, Y. C. Park, Nanomaterials 2021, 11, 222.
- 37W. Treesuppharat, P. Rojanapanthu, C. Siangsanoh, H. Manuspiya, S. Ummartyotin, Biotechnol. Rep. 2017, 15, 84.
- 38X. B. Xu, S. Y. Lu, C. M. Gao, C. Feng, C. Wu, X. Bai, N. N. Gao, Z. Y. Wang, M. Z. Liu, Chem. Eng. J. 2016, 300, 185.
- 39D. Gopinath, M. R. Ahmed, K. Gomathi, K. Chitra, P. K. Sehgal, R. Jayakumar, Biomaterials 2004, 25, 1911.
- 40X. Lu, J. Ye, D. Zhang, R. Xie, R. F. Bogale, Y. Sun, L. Zhao, Q. Zhao, G. Ning, J. Inorg. Biochem. 2014, 138, 114.
- 41T. Yin, Y. Li, Y. Ren, A. R. M. Fuad, F. Hu, R. Du, Y. Wang, G. Wang, Y. Wang, J. Nanobiotechnol. 2021, 19, 121.
- 42B. Mirani, Z. Hadisi, E. Pagan, S. M. H. Dabiri, A. van Rijt, L. Almutairi, I. Noshadi, D. G. Armstrong, M. Akbari, Adv. Healthcare Mater. 2023, 12, 2203233.
- 43H. Z. Kuang, Y. Wang, J. F. Hu, C. S. Wang, S. Y. Lu, X. M. Mo, ACS Appl. Mater. Interfaces 2018, 10, 19365.
- 44W. Luo, L. Y. Bai, J. Zhang, Z. W. Li, Y. N. Liu, X. Y. Tang, P. P. Xia, M. X. Xu, A. Shi, X. Liu, D. J. Zhang, P. Yu, Carbohydr. Polym. 2023, 311, 120718.
- 45H. Xue, L. C. Hu, Y. Xiong, X. W. Zhu, C. Y. Wei, F. Q. Cao, W. Zhou, Y. Sun, Y. Endo, M. F. Liu, Y. Liu, J. Liu, A. Abududilibaier, L. Chen, C. C. Yan, B. B. Mi, G. H. Liu, Carbohydr. Polym. 2019, 226, 115302.
- 46C. He, X. F. Liu, Z. Y. Zhou, N. Liu, X. C. Ning, Y. X. Miao, Y. Z. Long, T. Wu, X. F. Leng, Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 128, 112342.
- 47Y.-Y. Xie, Y.-W. Zhang, X.-Z. Liu, X.-F. Ma, X.-T. Qin, S.-R. Jia, C. Zhong, Chem. Eng. J. 2021, 413, 127542.
- 48Y.-Y. Xie, Y.-W. Zhang, X.-T. Qin, L.-P. Liu, F. Wahid, C. Zhong, S.-R. Jia, Colloids Surf., B 2020, 193, 111099.