Extremely Large Response of Phonon Coherence in Twisted Penta-NiN2 Bilayer
Chenxin Zhang
School of Materials Science and Engineering, CAPT, BKL-MEMD, Peking University, Beijing, 100871 China
Search for more papers by this authorJie Sun
Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032 Japan
Search for more papers by this authorYiheng Shen
School of Materials Science and Engineering, CAPT, BKL-MEMD, Peking University, Beijing, 100871 China
Search for more papers by this authorCunzhi Zhang
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60 637 USA
Search for more papers by this authorCorresponding Author
Qian Wang
School of Materials Science and Engineering, CAPT, BKL-MEMD, Peking University, Beijing, 100871 China
E-mail: [email protected]
Search for more papers by this authorAkira Yoshikawa
Institute for Materials Research, Tohoku University, Sendai, 980–8577 Japan
Search for more papers by this authorYoshiyuki Kawazoe
New Industry Creation Hatchery Center, Tohoku University, Sendai, 980–8577 Japan
Department of Physics, Suranaree University of Technology, Nakhon Ratchasima, 30000 Thailand
Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203 India
Search for more papers by this authorPuru Jena
Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284 USA
Search for more papers by this authorChenxin Zhang
School of Materials Science and Engineering, CAPT, BKL-MEMD, Peking University, Beijing, 100871 China
Search for more papers by this authorJie Sun
Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032 Japan
Search for more papers by this authorYiheng Shen
School of Materials Science and Engineering, CAPT, BKL-MEMD, Peking University, Beijing, 100871 China
Search for more papers by this authorCunzhi Zhang
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60 637 USA
Search for more papers by this authorCorresponding Author
Qian Wang
School of Materials Science and Engineering, CAPT, BKL-MEMD, Peking University, Beijing, 100871 China
E-mail: [email protected]
Search for more papers by this authorAkira Yoshikawa
Institute for Materials Research, Tohoku University, Sendai, 980–8577 Japan
Search for more papers by this authorYoshiyuki Kawazoe
New Industry Creation Hatchery Center, Tohoku University, Sendai, 980–8577 Japan
Department of Physics, Suranaree University of Technology, Nakhon Ratchasima, 30000 Thailand
Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203 India
Search for more papers by this authorPuru Jena
Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284 USA
Search for more papers by this authorAbstract
Twisting has recently been demonstrated as an effective strategy for tuning the interactions between particles or quasi-particles in layered materials. Motivated by the recent experimental synthesis of pentagonal NiN2 sheet [ACS Nano 2021, 15, 13539], for the first time, the response of phonon coherence to twisting in bilayer penta-NiN2, going beyond the particle-like phonon transport is studied. By using the unified theory of phonon transport and high order lattice anharmonicity, together with the self-consistent phonon theory, it is found that the lattice thermal conductivity is reduced by 80.6% from 33.35 to 6.47 W m−1 K−1 at 300 K when the layers are twisted. In particular, the contribution of phonon coherence is increased sharply by an order of magnitude, from 0.21 to 2.40 W m−1 K−1 , due to the reduced differences between the phonon frequencies and enhanced anharmonicity after the introduction of twist. The work provides a fundamental understanding of the phonon interaction in twisted pentagonal sheets.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303295-sup-0001-SuppMat.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Omini, A. Sparavigna, Physica B Condens. Matter 1995, 212, 101.
- 2a) J. S. Kang, M. Li, H. Wu, H. Nguyen, Y. Hu, Science 2018, 361, 575; b) S. Li, Q. Zheng, Y. Lv, X. Liu, X. Wang, P. Y. Huang, D. G. Cahill, B. Lv, Science 2018, 361, 579; c) F. Tian, B. Song, X. Chen, N. K. Ravichandran, Y. Lv, K. Chen, S. Sullivan, J. Kim, Y. Zhou, T.-H. Liu, Science 2018, 361, 582.
- 3a) I. Errea, M. Calandra, F. Mauri, Phys. Rev. B 2014, 89, 064302; b) T. Feng, X. Ruan, Phys. Rev. B 2016, 93, 045202; c) T. Feng, X. Ruan, Phys. Rev. B 2018, 97, 045202; d) T. Tadano, S. Tsuneyuki, Phys. Rev. B 2015, 92, 054301; e) T. Tadano, S. Tsuneyuki, Phys. Rev. Lett. 2018, 120, 105901; f) N. Werthamer, Phys. Rev. B 1970, 1, 572.
- 4S. Mukhopadhyay, D. S. Parker, B. C. Sales, A. A. Puretzky, M. A. McGuire, L. Lindsay, Science 2018, 360, 1455.
- 5a) L. Isaeva, G. Barbalinardo, D. Donadio, S. Baroni, Nat. Commun. 2019, 10, 3853; b) A. Jain, Phys. Rev. B 2020, 102, 201201; c) Y. Luo, X. Yang, T. Feng, J. Wang, X. Ruan, Nat. Commun. 2020, 11, 2554; d) M. Simoncelli, N. Marzari, F. Mauri, Nat. Phys. 2019, 15, 809; e) M. Simoncelli, N. Marzari, F. Mauri, Phys. Rev. X 2022, 12, 041011.
- 6Y. Xia, V. Ozoliņš, C. Wolverton, Phys. Rev. Lett. 2020, 125, 085901.
- 7K. Pal, Y. Xia, C. Wolverton, NPJ Comput. Mater. 2021, 7, 5.
- 8Z. Li, H. Xie, S. Hao, Y. Xia, X. Su, M. G. Kanatzidis, C. Wolverton, X. Tang, Phys. Rev. B 2021, 104, 245209.
- 9T. Pandey, M.-H. Du, D. S. Parker, L. Lindsay, Mater. Today. Phys. 2022, 28, 100881.
- 10J. Sun, C. Zhang, Z. Yang, Y. Shen, M. Hu, Q. Wang, ACS Appl. Mater. Interfaces 2022, 14, 11493.
- 11R. Hanus, J. George, M. Wood, A. Bonkowski, Y. Cheng, D. L. Abernathy, M. E. Manley, G. Hautier, G. J. Snyder, R. P. Hermann, Mater. Today. Phys. 2021, 18, 100344.
- 12Y. Xia, D. Gaines, J. He, K. Pal, Z. Li, M. G. Kanatzidis, V. Ozoliņš, C. Wolverton, Proc. Natl. Acad. Sci. USA 2023, 120, e2302541120.
- 13a) Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 2018, 556, 43; b) M. Serlin, C. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, A. Young, Science 2020, 367, 900.
- 14a) J. Yan, C. Ma, Y. Huang, G. Yang, Adv. Sci. 2019, 6, 1802092;
10.1002/advs.201802092 Google Scholarb) N. Zhang, A. Surrente, M. Baranowski, D. K. Maude, P. Gant, A. Castellanos-Gomez, P. Plochocka, Nano Lett. 2018, 18, 7651.
- 15a) S. Chen, M. He, Y.-H. Zhang, V. Hsieh, Z. Fei, K. Watanabe, T. Taniguchi, D. H. Cobden, X. Xu, C. R. Dean, Nat. Phys. 2021, 17, 374; b) A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. Kastner, D. Goldhaber-Gordon, Science 2019, 365, 605.
- 16C. Li, B. Debnath, X. Tan, S. Su, K. Xu, S. Ge, M. R. Neupane, R. K. Lake, Carbon 2018, 138, 451.
- 17J. Sun, M. Hu, C. Zhang, L. Bai, C. Zhang, Q. Wang, Adv. Funct. Mater. 2022, 32, 2209000.
- 18M. Bykov, E. Bykova, A. V. Ponomareva, F. Tasnadi, S. Chariton, V. B. Prakapenka, K. Glazyrin, J. S. Smith, M. F. Mahmood, I. A. Abrikosov, A. F. Goncharov, ACS Nano 2021, 15, 13539.
- 19C. X. Zhang, J. Sun, Y. H. Shen, W. Kang, Q. Wang, J. Phys. Chem. Lett. 2022, 13, 5734.
- 20J.-H. Yuan, Y.-Q. Song, Q. Chen, K.-H. Xue, X.-S. Miao, Appl. Surf. Sci. 2019, 469, 456.
- 21a) M. Born, K. Huang, M. Lax, Am. J. Phys. 1955, 23, 474;
10.1119/1.1934059 Google Scholarb) Y. Ding, Y. Wang, J. Phys. Chem. C 2013, 117, 18266; c) F. Mouhat, F.-X. Coudert, Phys. Rev. B 2014, 90, 224104.
- 22a) J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207; b) J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2006, 118, 8207.
- 23R. A. Cowley, Rep. Prog. Phys. 1968, 31, 123.
- 24A. Ioffe, A. Regel, Prog. Semicond. 1960, 4, 237.
- 25P. Lazić, Comput. Phys. Commun. 2015, 197, 324.
- 26a) P. E. Blöchl, Phys. Rev. B 1994, 50, 17953; b) G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 27G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 28J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 29Y. Hu, C. Storey, J. Optim. Theory Appl. 1991, 69, 139.
- 30a) M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, B. I. Lundqvist, Phys. Rev. Lett. 2004, 92, 246401; b) J. Klimeš, D. R. Bowler, A. Michaelides, J. Phys.: Condens. Matter 2009, 22, 022201; c) J. Klimeš, D. R. Bowler, A. Michaelides, Phys. Rev. B 2011, 83, 195131.
- 31H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 32Z. Han, X. Yang, W. Li, T. Feng, X. Ruan, Comput. Phys. Commun. 2022, 270, 108179.
- 33A. Togo, I. Tanaka, Scr. Mater. 2015, 108, 1.
- 34I. S. Novikov, K. Gubaev, E. V. Podryabinkin, A. V. Shapeev, Mach. Learn.: Sci. Technol. 2020, 2, 025002.
10.1088/2632-2153/abc9fe Google Scholar
- 35A. V. Shapeev, Multiscale Model. Simul. 2016, 14, 1153.
- 36F. Eriksson, E. Fransson, P. Erhart, Adv. Theory Simul. 2019, 2, 1800184.
- 37E. Fransson, F. Eriksson, P. Erhart, NPJ Comput. Mater. 2020, 6, 135.
- 38a) Z. Sun, K. Yuan, X. Zhang, G. Qin, X. Gong, D. Tang, Phys. Chem. Chem. Phys. 2019, 21, 15647; b) X. Wu, V. Varshney, J. Lee, Y. Pang, A. K. Roy, T. Luo, Chem. Phys. Lett. 2017, 669, 233.