Dual-Stimuli Cooperative Responsive Hydrogel Microactuators Via Two-Photon Lithography
Jian-Yu Wang
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407 P. R. China
Search for more papers by this authorCorresponding Author
Feng Jin
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXian-Zi Dong
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
Search for more papers by this authorJie Liu
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
Search for more papers by this authorMing-Xia Zhou
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407 P. R. China
Search for more papers by this authorTeng Li
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407 P. R. China
Search for more papers by this authorCorresponding Author
Mei-Ling Zheng
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJian-Yu Wang
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407 P. R. China
Search for more papers by this authorCorresponding Author
Feng Jin
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXian-Zi Dong
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
Search for more papers by this authorJie Liu
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
Search for more papers by this authorMing-Xia Zhou
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407 P. R. China
Search for more papers by this authorTeng Li
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407 P. R. China
Search for more papers by this authorCorresponding Author
Mei-Ling Zheng
Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
With the development of bionics as well as materials science, intelligent soft actuators have shown promising applications in many fields such as soft robotics, sensing, and remote manipulation. Microfabrication technologies have enabled the reduction of the size of responsive soft actuators to the micron level. However, it is still challenging to construct microscale actuators capable of responding to different external stimuli in complex and diverse conditions. Here, this work demonstrates a dual-stimuli cooperative responsive hydrogel microactuator by asymmetric fabrication via femtosecond laser direct writing. The dual response of the hydrogel microstructure is achieved by employing responsive hydrogel with functional monomer 2-(dimethylamino)ethyl methacrylate. Raman spectra of the hydrogel microstructures suggest that the pH and temperature response of the hydrogel is generated by the changes in tertiary amine groups and hydrogen bonds, respectively. The asymmetric hydrogel microstructures show opposite bending direction when being heated to high temperature or exposed to acid solution, and can independently accomplish the grasp of polystyrene microspheres. Moreover, this work depicts the cooperative response of the hydrogel microactuator to pH and temperature at the same time. The dual-stimuli cooperative responsive hydrogel microactuators will provide a strategy for designing and fabricating controllable microscale actuators with promising applications in microrobotics and microfluidics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303166-sup-0001-SuppMat.pdf906.3 KB | Supporting Information |
smll202303166-sup-0002-MovieS1.mp41.8 MB | Supplemental Movie 1 |
smll202303166-sup-0003-MovieS2.mp42.2 MB | Supplemental Movie 2 |
smll202303166-sup-0004-MovieS3.mp45.8 MB | Supplemental Movie 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. A. McEvoy, N. Correll, Science 2015, 347, 1261689.
- 2M. Kang, M. Seong, D. Lee, S. M. Kang, M. K. Kwak, H. E. Jeong, Adv. Mater. 2022, 34, 2200185.
- 3C. J. Brokaw, Science 1989, 243, 1593.
- 4D.-D. Han, Y.-L. Zhang, Z.-D. Chen, J.-C. Li, J.-N. Ma, J.-W. Mao, H. Zhou, H.-B. Sun, Opto-Electron. Adv. 2023, 6, 210163.
- 5H. S. Atamian, N. M. Creux, E. A. Brown, A. G. Garner, B. K. Blackman, S. L. Harmer, Science 2016, 353, 587.
- 6M. Seale, A. Kiss, S. Bovio, I. M. Viola, E. Mastropaolo, A. Boudaoud, N. Nakayama, Nat. Commun. 2022, 13, 2498.
- 7H. Quan, D. Kisailus, M. A. Meyers, Nat. Rev. Mater. 2021, 6, 264.
- 8M. Cianchetti, C. Laschi, A. Menciassi, P. Dario, Nat. Rev. Mater. 2018, 3, 143.
- 9Y. Kim, G. A. Parada, S. Liu, X. Zhao, Sci Robot 2019, 4, eaax7329.
- 10M. Ilami, H. Bagheri, R. Ahmed, E. O. Skowronek, H. Marvi, Adv. Mater. 2021, 33, 2003139.
- 11M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, M. Sitti, Nat. Rev. Mater. 2022, 7, 235.
- 12X. Liu, J. Liu, S. Lin, X. Zhao, Mater. Today. 2020, 36, 102.
- 13P. Lavrador, M. R. Esteves, V. M. Gaspar, J. F. Mano, Adv. Funct. Mater. 2021, 31, 2005941.
- 14C. Lu, Y. Yang, J. Wang, R. Fu, X. Zhao, L. Zhao, Y. Ming, Y. Hu, H. Lin, X. Tao, Y. Li, W. Chen, Nat. Commun. 2018, 9, 752.
- 15D. Pang, M. Alhabeb, X. Mu, Y. Dall'Agnese, Y. Gogotsi, Y. Gao, Nano Lett. 2019, 19, 7443.
- 16J. Mu, G. Wang, H. Yan, H. Li, X. Wang, E. Gao, C. Hou, A. T. C. Pham, L. Wu, Q. Zhang, Y. Li, Z. Xu, Y. Guo, E. Reichmanis, H. Wang, M. Zhu, Nat. Commun. 2018, 9, 590.
- 17T. Jia, Y. Wang, Y. Dou, Y. Li, M. Jung de Andrade, R. Wang, S. Fang, J. Li, Z. Yu, R. Qiao, Z. Liu, Y. Cheng, Y. Su, M. Minary-Jolandan, R. H. Baughman, D. Qian, Z. Liu, Adv. Funct. Mater. 2019, 29, 1808241.
- 18Z. Zhakypov, K. Mori, K. Hosoda, J. Paik, Nature 2019, 571, 381.
- 19B. Han, Y.-L. Zhang, Q.-D. Chen, H.-B. Sun, Adv. Funct. Mater. 2018, 28, 1802235.
- 20B.-X. Zhang, F. Jin, X.-Z. Dong, J. Liu, M.-L. Zheng, J. Mater. Chem. C 2022, 10, 15075.
- 21Y. Liang, M. Li, Y. Yang, L. Qiao, H. Xu, B. Guo, ACS Nano 2022, 16, 3194.
- 22D. Zhang, B. Ren, Y. Zhang, L. Xu, Q. Huang, Y. He, X. Li, J. Wu, J. Yang, Q. Chen, Y. Chang, J. Zheng, J. Mater. Chem. B 2020, 8, 3171.
- 23X. Hui, J. Luo, R. Wang, H. Sun, ACS Nano 2023, 17, 6589.
- 24A. H. Agergaard, A. Sommerfeldt, S. U. Pedersen, H. Birkedal, K. Daasbjerg, Angew. Chem., Int. Ed. 2021, 60, 21543.
- 25X. Kong, Y. Li, W. Xu, H. Liang, Z. Xue, Y. Niu, M. Pang, C. Ren, Macromol. Rapid Commun. 2021, 42, 2100416.
- 26C. Chen, Y. Liu, X. He, H. Li, Y. Chen, Y. Wei, Y. Zhao, Y. Ma, Z. Chen, X. Zheng, H. Liu, Chem. Mater. 2021, 33, 987.
- 27Y. Dong, L. Wang, N. Xia, Y. Wang, S. Wang, Z. Yang, D. Jin, X. Du, E. Yu, C. Pan, B.-F. Liu, L. Zhang, Nano Energy 2021, 88, 106254.
- 28W. Wang, Y. Zhang, Y.-L. Zhang, J.-R. Zhang, X.-C. Sun, D.-D. Han, H.-B. Sun, ACS Appl Mater Interfaces 2022, 14, 27242.
- 29Y.-Y. Zhao, X.-L. Ren, M.-L. Zheng, F. Jin, J. Liu, X.-Z. Dong, Z.-S. Zhao, X.-M. Duan, Opto-Electron. Adv. 2021, 4, 200101.
- 30Q. Liu, J. Zhao, J. Guo, R. Wu, W. Liu, Y. Chen, G. Du, H. Duan, Nano Lett. 2021, 21, 2390.
- 31H. Ding, Q. Zhang, H. Gu, X. Liu, L. Sun, M. Gu, Z. Gu, Adv. Funct. Mater. 2020, 30, 1901760.
- 32F. Diehl, S. Hageneder, S. Fossati, S. K. Auer, J. Dostalek, U. Jonas, Chem. Soc. Rev. 2022, 51, 3926.
- 33M. Hippler, K. Weißenbruch, K. Richler, E. D. Lemma, M. Nakahata, B. Richter, C. Barner-Kowollik, Y. Takashima, A. Harada, E. Blasco, M. Wegener, M. Tanaka, M. Bastmeyer, Sci. Adv. 2020, 6, eabc2648.
- 34M. Zhang, Y. Wang, M. Jian, C. Wang, X. Liang, J. Niu, Y. Zhang, Adv. Sci. 2020, 7, 1903048.
- 35Y.-H. Liu, Y.-Y. Zhao, F. Jin, X.-Z. Dong, M.-L. Zheng, Z.-S. Zhao, X.-M. Duan, Nano Lett. 2021, 21, 3915.
- 36H. Yu, Q. Zhang, B. P. Cumming, E. Goi, J. H. Cole, H. Luan, X. Chen, M. Gu, Adv. Sci. 2021, 8, 2100141.
- 37S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 2001, 412, 697.
- 38K. Sun, D. Tan, X. Fang, X. Xia, D. Lin, J. Song, Y. Lin, Z. Liu, M. Gu, Y. Yue, J. Qiu, Science 2022, 375, 307.
- 39C. Zhang, Z. Li, H. Li, Q. Yang, H. Wang, C. Shan, J. Zhang, X. Hou, F. Chen, ACS Appl. Mater. Interfaces 2022, 14, 38328.
- 40K. Liu, H. Ding, S. Li, Y. Niu, Y. Zeng, J. Zhang, X. Du, Z. Gu, Nat. Commun. 2022, 13, 4563.
- 41J. An, T.-S. D. Le, C. H. J. Lim, V. T. Tran, Z. Zhan, Y. Gao, L. Zheng, G. Sun, Y.-J. Kim, Adv. Sci. 2018, 5, 1800496.
- 42M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Light: Sci. Appl. 2016, 5, e16133.
- 43C. N. LaFratta, J. T. Fourkas, T. Baldacchini, R. A. Farrer, Angew. Chem., Int. Ed. 2007, 46, 6238.
- 44F. Jin, J. Liu, Y.-Y. Zhao, X.-Z. Dong, M.-L. Zheng, X.-M. Duan, Nat. Commun. 2022, 13, 1357.
- 45W. Gao, H. Chao, Y.-C. Zheng, W.-C. Zhang, J. Liu, F. Jin, X.-Z. Dong, Y.-H. Liu, S.-J. Li, M.-L. Zheng, ACS Appl. Mater. Interfaces 2021, 13, 27796.
- 46Z.-Y. Hu, Y.-L. Zhang, C. Pan, J.-Y. Dou, Z.-Z. Li, Z.-N. Tian, J.-W. Mao, Q.-D. Chen, H.-B. Sun, Nat. Commun. 2022, 13, 5634.
- 47S.-F. Liu, Z.-W. Hou, L. Lin, F. Li, Y. Zhao, X.-Z. Li, H. Zhang, H.-H. Fang, Z. Li, H.-B. Sun, Science 2022, 377, 1112.
- 48Y. Jia, C. A. Spiegel, A. Welle, S. Heißler, E. Sedghamiz, M. Liu, W. Wenzel, M. Hackner, J. P. Spatz, M. Tsotsalas, E. Blasco, Adv. Funct. Mater. 2022, 2207826.
- 49Y.-C. Zheng, Y.-Y. Zhao, M.-L. Zheng, S.-L. Chen, J. Liu, F. Jin, X.-Z. Dong, Z.-S. Zhao, X.-M. Duan, ACS Appl. Mater. Interfaces 2019, 11, 1782.
- 50C.-L. Zheng, F. Jin, Y.-Y. Zhao, M.-L. Zheng, J. Liu, X.-Z. Dong, Z. Xiong, Y.-Z. Xia, X.-M. Duan, Sens. Actuators, B 2020, 304, 127345.
- 51J.-Y. Wang, F. Jin, X.-Z. Dong, J. Liu, M.-L. Zheng, Adv. Mater. Technol. 2022, 7, 2200276.
- 52Y. Hu, Z. Wang, D. Jin, C. Zhang, R. Sun, Z. Li, K. Hu, J. Ni, Z. Cai, D. Pan, X. Wang, W. Zhu, J. Li, D. Wu, L. Zhang, J. Chu, Adv. Funct. Mater. 2020, 30, 1907377.
- 53Y.-L. Zhang, Y. Tian, H. Wang, Z.-C. Ma, D.-D. Han, L.-G. Niu, Q.-D. Chen, H.-B. Sun, ACS Nano 2019, 13, 4041.
- 54Z. Xiong, C.-L. Zheng, F. Jin, R.-M. Wei, Y.-Y. Zhao, X.-Z. Gao, Y.-Z. Xia, X.-Z. Dong, M.-L. Zheng, X.-M. Duan, Sens. Actuators, B 2018, 274, 541.
- 55R. Li, D. Jin, D. Pan, S. Ji, C. Xin, G. Liu, S. Fan, H. Wu, J. Li, Y. Hu, D. Wu, L. Zhang, J. Chu, ACS Nano 2020, 14, 5233.
- 56C. Xin, D. Jin, Y. Hu, L. Yang, R. Li, L. Wang, Z. Ren, D. Wang, S. Ji, K. Hu, D. Pan, H. Wu, W. Zhu, Z. Shen, Y. Wang, J. Li, L. Zhang, D. Wu, J. Chu, ACS Nano 2021, 15, 18048.
- 57M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, M. Bastmeyer, Nat. Commun. 2019, 10, 232.
- 58Z.-C. Ma, Y.-L. Zhang, B. Han, X.-Y. Hu, C.-H. Li, Q.-D. Chen, H.-B. Sun, Nat. Commun. 2020, 11, 4536.
- 59T.-Y. Huang, H.-W. Huang, D. D. Jin, Q. Y. Chen, J. Y. Huang, L. Zhang, H. L. Duan, Sci. Adv. 2020, 6, eaav8219.
- 60F. Rajabasadi, S. Moreno, K. Fichna, A. Aziz, D. Appelhans, O. G. Schmidt, M. Medina-Sánchez, Adv. Mater. 2022, 34, 2204257.
- 61T. Zırıh, N. Orakdogen, Eur. Polym. J. 2016, 75, 371.
- 62V. Nigro, F. Ripanti, R. Angelini, A. Sarra, M. Bertoldo, E. Buratti, P. Postorino, B. Ruzicka, J. Mol. Liq. 2019, 284, 718.
- 63P. Schmidt, J. Dybal, M. Trchová, Vib. Spectrosc. 2006, 42, 278.
- 64N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic, London 1990.
10.1016/B978-0-08-091740-5.50014-4 Google Scholar