Reticular Chemistry of the Fcu-Type Gd(III)-Doped Metal–Organic Framework for T1-Weighted Magnetic Resonance Imaging
Tianze Qiu
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorTianze Wu
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorMingzhu Lu
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorYuxi Xie
Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, 201907 China
Search for more papers by this authorMengmeng Zhang
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorDan Luo
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorZhenxia Chen
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorBo Yin
Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, 201907 China
Search for more papers by this authorYaming Zhou
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorCorresponding Author
Yun Ling
Department of Chemistry, Fudan University, Shanghai, 200438 China
E-mail: [email protected]
Search for more papers by this authorTianze Qiu
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorTianze Wu
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorMingzhu Lu
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorYuxi Xie
Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, 201907 China
Search for more papers by this authorMengmeng Zhang
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorDan Luo
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorZhenxia Chen
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorBo Yin
Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, 201907 China
Search for more papers by this authorYaming Zhou
Department of Chemistry, Fudan University, Shanghai, 200438 China
Search for more papers by this authorCorresponding Author
Yun Ling
Department of Chemistry, Fudan University, Shanghai, 200438 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Nanoscale metal–organic frameworks (nanoMOFs) are emerging as an important class of nanomaterials for the systematical investigation of biomedically relevant structure-property relationship (SPR) due to their highly tailorable features. In this work, the reticular chemistry approach is shown to explore the SPR of a fcu-type Zr(IV)-nanoMOF for T1-weighted magnetic resonance imaging (MRI). Isoreticular replacement of the eight-coordinated square-antiprismatic Zr(IV) by nine-coordinated Gd(III) brings a stoichiometric water capped on the square-antiprismatic site, enabling the relaxation transfer in the inner-sphere, giving the r1 value of 4.55 mM−1·s−1 at the doping ratio of Gd : Zr = 1 : 1. Then, these isoreticular engineering studies provide feasible ways to facilitate the relaxation transfer in the second- and outer-sphere of the Gd(III)-doped Zr-oxo cluster for the relaxation respectively. Finally, these in vitro and in vivo MRI studies revealed that the Gd(III)-doped Zr-oxo cluster aggregated underlying the fcu-type framework surpasses its discrete molecular cluster for MRI. These results demonstrated that there is plenty of room inside MOFs for T1-weighted MRI by reticular chemistry.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll2023003063-sup-0001-SuppMat.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Wahsner, E. M. Gale, A. Rodríguez-Rodríguez, P. Caravan, Chem. Rev. 2019, 119, 957.
- 2R. Antwi-Baah, Y. Wang, X. Chen, K. Yu, Adv. Mater. Interfaces 2022, 9, 2101710.
- 3P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293.
- 4H. Li, T. J. Meade, J. Am. Chem. Soc. 2019, 141, 17025.
- 5Y. Geng, T. Wu, Q. Han, Y. Yang, Z. Chen, X. Li, B. Yin, Y. Zhou, Y. Ling, Chin. Chem. Lett. 2023, 34, 107685.
- 6M. Zhang, M. Lu, T. Qiu, Q. Wang, Z. Chen, M. Deng, Y. Yang, Y. Yang, W. Li, Y. Ling, Y. Zhou, Small 2023, 2301894.
10.1002/smll.202301894 Google Scholar
- 7P. Caravan, Chem. Soc. Rev. 2006, 35, 512.
- 8J. L. Major, T. J. Meade, Acc. Chem. Res. 2009, 42, 893.
- 9C.-H. Huang, A. Tsourkas, Curr. Top. Med. Chem. 2013, 13, 411.
- 10A. J. L. Villaraza, A. Bumb, M. W. Brechbiel, Chem. Rev. 2010, 110, 2921.
- 11B. Z. Gulyás, C.-T. Yang, RSC Adv. 2016, 6, 60945.
- 12G. J. Soufi, A. Hekmatnia, S. Iravani, R. S. Varma, ACS Appl. Nano Mater. 2022, 5, 10151.
- 13H. Zhang, J. Zhang, Y. Chen, T. Wu, M. Lu, Z. Chen, J. Yu, Y. Yang, Y. Ling, Y. Zhou, Nanoscale Adv 2022, 4, 1414.
- 14Y. Kadria-Vili, O. Neumann, Y. Zhao, P. Nordlander, G. V. Martinez, J. A. Bankson, N. J. Halas, Proc. Natl. Acad. Sci. 2022, 119, e2123527119.
- 15Z. Zhou, C. Wu, H. Liu, X. Zhu, Z. Zhao, L. Wang, Y. Xu, H. Ai, J. Gao, ACS Nano 2015, 9, 3012.
- 16Z. Zhou, R. Hu, L. Wang, C. Sun, G. Fu, J. Gao, Nanoscale 2016, 8, 17887.
- 17O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705.
- 18S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem., Int. Ed. 2004, 43, 2334.
- 19G. Ferey, Chem. Soc. Rev. 2007, 37, 191.
- 20A. Kirchon, L. Feng, H. F. Drake, E. A. Joseph, H. Zhou, Chem. Soc. Rev. 2018, 47, 8611.
- 21X. Zhang, Z. Chen, X. Liu, S. Hanna, X. Wang, R. Taheri-Ledari, A. Maleki, P. Li, O. K. Farha, Chem. Soc. Rev. 2020, 49, 7406.
- 22K. Lu, T. Aung, N. Guo, R. Weichselbaum, W. Lin, Adv. Mater. 2018, 30, 1707634.
- 23T. Simon-Yarza, A. Mielcarek, P. Couvreur, C. Serre, Adv. Mater. 2018, 30, 1707365.
- 24S. Tai, W. Zhang, J. Zhang, G. Luo, Y. Jia, M. Deng, Y. Ling, Microporous Mesoporous Mater. 2016, 220, 148.
- 25J. Li, W. Lu, Y. Yang, R. Xiang, Y. Ling, C. Yu, Y. Zhou, Adv. Sci. 2023, 10, 2204932.
- 26W. Rieter, K. M. L. Taylor, H. An, W. Lin, W. Lin, J. Am. Chem. Soc. 2006, 128, 9024.
- 27M. A. Chowdhury, ChemBioEng Rev. 2017, 4, 225.
- 28H. Bunzen, D. Jirák, ACS Appl. Mater. Interfaces 2022, 14, 50445.
- 29K. M. L. Taylor, A. Jin, W. Lin, Angew. Chem., Int. Ed. 2008, 47, 7722.
- 30J. D. R. Rocca, W. Lin, Eur. J. Inorg. Chem. 2010, 3725.
- 31W. Hatakeyama, T. J. Sanchez, M. D. Rowe, N. J. Serkova, M. W. Liberatore, S. G. Boyes, ACS Appl. Mater. Interfaces 2011, 3, 1502.
- 32a) M. Jia, X. Yang, Y. Chen, M. He, W. Zhou, J. Lin, L. An, S. Yang, J. Mater. Chem. B 2021, 9, 8631; b) J. S. Ananta, B. Godin, R. Sethi, L. Moriggi, X. Liu, R. E. Serda, R. Krishnamurthy, R. Muthupillai, R. D. Bolskar, L. Helm, M. Ferrari, L. J. Wilson, P. Decuzzi, Nat. Nanotechnol. 2010, 5, 815.
- 33J. T. Ferrucci, J. Wittenberg, M. Nigam, P. F. Hahn, D. D. Stark, S. Saini, J. C. Bousquet, Radiology 1988, 166, 693.
- 34J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850.
- 35J. B. DeCoste, G. W. Peterson, H. Jasuja, T. G. Glover, Y. Huang, K. S. Walton, J. Mater. Chem. A 2013, 1, 5642.
- 36J. Feng, T. Liu, J. Shi, S. Y. Gao, R. Cao, ACS Appl. Mater. Interfaces 2018, 10, 20854.
- 37A. H. Assen, Y. Belmabkhout, K. Adil, P. M. Bhatt, D.-X. Xue, H. Jiang, M. Eddaoudi, Angew. Chem., Int. Ed. 2015, 54, 14353.
- 38G. Liu, V. Chernikova, Y. Liu, K. Zhang, O. S. Belmabkhout, C. Zhang, S. Yi, M. Eddaoudi, W. J. Koros, Nat. Mater. 2018, 17, 283.
- 39P. R. Donnarumma, S. Frojmovic, P. Marino, H. A. Bicalho, H. M. Titi, A. J. Howarth, Chem. Commun. 2021, 57, 6121.
- 40R. Luebke, Y. Belmabkhout, L. J. Weseliński, A. J. Cairns, M. Alkordi, G. Norton, L. Wojtas, K. Adil, M. Eddaoudi, Chem. Sci. 2015, 6, 4095.
- 41D. Raiser, J. P. Deville, J. Electron Spectrosc. Relat. Phenom. 1991, 57, 91.
- 42T. Xia, W. Cao, Y. Cui, Y. Yang, G. Qian, Opto-Electron. Adv. 2021, 4, 200063.
- 43E. Ning, L. Yang, B. Tu, Q. Pang, X. Li, H. Xu, Y. Qi, Q. Li, J. Colloid Interface Sci. 2019, 552, 372.
- 44P. J. Wooldridge, J. P. Devlin, J Chem Phys 1988, 88, 3086.
- 45V. V. Butova, A. P. Budnyk, A. A. Guda, K. A. Lomachenko, A. L. Bugaev, A. V. Soldatov, S. M. Chavan, S. Øien-Ødegaard, U. Olsbye, K. P. Lillerud, C. Atzori, S. Bordiga, C. Lamberti, Cryst. Growth Des. 2017, 17, 5422.
- 46M. Peller, A. Lanza, S. Wuttke, Adv. Ther. 2021, 4, 2100067.
10.1002/adtp.202100067 Google Scholar
- 47G. Kickelbick, U. Schubert, Chem. Ber. 1997, 130, 473.
- 48Y. Zhang, I. Y. Kokculer, F. de Azambuja, T. N. Parac-Vogt, Catal. Sci. Technol. 2023, 13, 100.
- 49K. M. Tsoi, S. A. MacParland, X. Z. Ma, V. N. Spetzler, J. Echeverri, B. Ouyang, S. M. Fadel, E. A. Sykes, N. Goldaracena, J. M. Conneely, B. A. Alman, M. Selzner, M. A. Ostrowski, O. A. Adeyi, A. Zilman, I. D. McGilvray, W. C. W. Chan, Nat. Mater. 2016, 15, 1212.
- 50H. Zhang, Y. Shang, Y.-H. Li, S.-K. Sun, X.-B. Yin, ACS Appl Mater Interfaces 2019, 11, 1886.