N-Doping Induced Lattice Expansion of 1D Template Confined Ultrathin MoS2 Sheets to Significantly Enhance Lithium Polysulfides Redox Kinetics for Li–S Battery
Minzhe Chen
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006 China
Search for more papers by this authorNan Wang
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632 China
Search for more papers by this authorWei Zhou
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006 China
Search for more papers by this authorXiaoyan Zhu
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006 China
Search for more papers by this authorQikai Wu
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006 China
Search for more papers by this authorMing-Hsien Lee
Department of Physics, Tamkang University, New Taipei, 25137 Taiwan
Search for more papers by this authorCorresponding Author
Dengke Zhao
School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shunlian Ning
School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Maozhong An
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ligui Li
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorMinzhe Chen
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006 China
Search for more papers by this authorNan Wang
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632 China
Search for more papers by this authorWei Zhou
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006 China
Search for more papers by this authorXiaoyan Zhu
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006 China
Search for more papers by this authorQikai Wu
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006 China
Search for more papers by this authorMing-Hsien Lee
Department of Physics, Tamkang University, New Taipei, 25137 Taiwan
Search for more papers by this authorCorresponding Author
Dengke Zhao
School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shunlian Ning
School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong, 510275 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Maozhong An
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ligui Li
New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Preparing MoS2-based materials with reasonable structure and catalytic activity to enhance the sluggish kinetics of lithium polysulfides (LiPSs) conversion is of great significance for Li–S batteries (LSBs) but still remain a challenge. Hence, hollow nanotubes composed of N-doped ultrathin MoS2 nanosheets (N-MoS2 NHTs) are fabricated as efficient S hosts for LSBs by using CdS nanorods as a sacrifice template. Characterization and theoretical results show that the template effectively inhibits the excessive growth of MoS2 sheets, and N doping expands the interlayer spacing and modulates the electronic structure, thus accelerating the mass/electron transfer and enhancing the LiPSs adsorption and transformation. Benefiting from the merits, the N-MoS2 NHTs@S cathode exhibits an excellent initial capacity of 887.8 mAh g−1 and stable cycling performances with capacity fading of only 0.0436% per cycle at 1.0 C (500 cycles). Moreover, even at high S loading that of 7.5 mg cm−2, the N-MoS2 NHTs@S cathode also presents initial excellent areal capacity of 7.80 mAh cm−2 at 0.2 C. This study offers feasible guidance for designing advanced MoS2-based cathode materials in LSBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
smll202303015-sup-0001-SuppMat.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Lu, X. Wang, Y. Hu, L. Yue, Z. Shao, W. Zhou, L. Chen, W. Wang, Y. Li, Adv. Funct. Mater. 2023, 33 , 2212689.
- 2J. Wu, J. Huang, Y. Cui, D. Miao, X. Ke, Y. Lu, D. Wu, Adv. Mater. 2023, 35 , 2211471.
- 3X. Zhang, G. Hu, K. Chen, L. Shen, R. Xiao, P. Tang, C. Yan, H.-M. Cheng, Z. Sun, F. Li, Energy Stor. Mater. 2022, 45, 1144.
- 4M. Zhang, L. Wang, B. Wang, B. Zhang, X. Sun, D. Wang, Z. Kong, L. Xu, J. Mater. Chem. 2021, 9, 6538.
- 5X. Song, D. Tian, Y. Qiu, X. Sun, B. Jiang, C. Zhao, Y. Zhang, L. Fan, N. Zhang, Adv. Funct. Mater. 2021, 32, 2109413.
- 6A. Fu, C. Wang, F. Pei, J. Cui, X. Fang, N. Zheng, Small 2019, 15, 1804786.
- 7X. Wei, Y. Luo, X. Du, L. Wu, G. Liu, J. Li, Chem. Eng. J. 2023, 454, 140152.
- 8B. Yan, X. Li, W. Xiao, J. Hu, L. Zhang, X. Yang, J. Mater. Chem. 2020, 8, 17848.
- 9X. Yang, S. Chen, W. Gong, X. Meng, J. Ma, J. Zhang, L. Zheng, H. D. Abruna, J. Geng, Small 2020, 16, 2004950.
- 10R. Zhang, Y. Dong, M. A. Al-Tahan, Y. Zhang, R. Wei, Y. Ma, C. Yang, J. Zhang, J. Energy Chem. 2021, 60, 85.
- 11Y. Cao, Y. Lin, J. Wu, X. Huang, Z. Pei, J. Zhou, G. Wang, ChemSusChem. 2020, 13, 1392.
- 12J. Wu, X. Li, H. Zeng, Y. Xue, F. Chen, Z. Xue, Y. Ye, X. Xie, J. Mater. Chem. 2019, 7, 7897.
- 13Z. Deng, H. Jiang, Y. Hu, Y. Liu, L. Zhang, H. Liu, C. Li, Adv. Mater. 2017, 29, 1603020.
- 14X. Chen, S. Zeng, H. Muheiyati, Y. Zhai, C. Li, X. Ding, L. Wang, D. Wang, L. Xu, Y. He, Y. Qian, ACS Energy Lett. 2019, 4, 1496.
- 15Q. Chen, S. Sun, T. Zhai, M. Yang, X. Zhao, H. Xia, Adv. Energy Mater. 2018, 8, 1800054.
- 16H. Zhang, M. Zou, W. Zhao, Y. Wang, Y. Chen, Y. Wu, L. Dai, A. Cao, ACS Nano. 2019, 13, 3982.
- 17B. Wang, L. Wang, D. Ding, Y. Zhai, F. Wang, Z. Jing, X. Yang, Y. Kong, Y. Qian, L. Xu, Adv. Mater. 2022, 34, 2204403.
- 18S. Bolar, S. Shit, N. C. Murmu, P. Samanta, T. Kuila, ACS Appl. Mater. Interfaces 2021, 13, 765.
- 19H. Lim, S. Yu, W. Choi, S. O. Kim, ACS Nano. 2021, 15, 7409.
- 20Y. L. Zhong, W. X. Dai, D. Liu, W. Wang, L. T. Wang, J. P. Xie, R. Li, Q. L. Yuan, G. Hong, Small 2021, 17, 2101576.
- 21Y. Li, M. Chen, H. Liu, P. Zeng, D. Zhang, H. Yu, X. Zhou, C. Guo, Z. Luo, Y. Wang, B. Chang, X. Wang, Chem. Eng. J. 2021, 425.
- 22J. Cho, S. Ryu, Y. J. Gong, S. Pyo, H. Yun, H. Kim, J. Lee, J. Yoo, Y. S. Kim, Chem. Eng. J. 2022, 439,135568.
- 23M. Tebyetekerwa, J. Zhang, K. Liang, T. Duong, G. P. Neupane, L. Zhang, B. Liu, T. N. Truong, R. Basnet, X. Qiao, Z. Yin, Y. Lu, D. Macdonald, H. T. Nguyen, Adv. Mater. 2019, 31, 1900522.
- 24I. Marriam, M. Tebyetekerwa, H. Chen, H. Chathuranga, N. Motta, J. A. Alarco, Z.-J. He, J.-C. Zheng, A. Du, C. Yan, J. Mater. Chem. 2023, 11, 2670.
- 25M. Shi, Z. Liu, S. Zhang, S. Liang, Y. Jiang, H. Bai, Z. Jiang, J. Chang, J. Feng, W. Chen, H. Yu, S. Liu, T. Wei, Z. Fan, Adv. Energy Mater. 2022, 12, 2103657.
- 26Y. Xu, J. Yang, T. Liao, R. Ge, Y. Liu, J. Zhang, Y. Li, M. Zhu, S. Li, W. Li, Chem. Eng. J. 2022, 431, 134126.
- 27X. Liang, J. Cai, S. Qiu, S. Niu, Y. Liu, X. Wang, G. Wang, Z. Chen, M. Chen, J. Mater. Chem. 2022, 10, 23780.
- 28Y. You, Y. Ye, M. Wei, W. Sun, Q. Tang, J. Zhang, X. Chen, H. Li, J. Xu, Chem. Eng. J. 2019, 355, 671.
- 29Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang, H. Zhang, H. Zhao, Adv. Energy Mater. 2019, 9, 1803935.
- 30Y. Mo, K. Yang, J. Lin, M. Liu, G. Ye, J. Yu, J. Mater. Chem. 2023,, 11, 6349.
- 31T. Z. Hou, W. T. Xu, X. Chen, H. J. Peng, J. Q. Huang, Q. Zhang, Angew. Chem., Int. Ed. 2017, 56, 8178.
- 32Y. Yang, W. Wang, L. Li, B. Li, J. Zhang, J. Mater. Chem. 2020, 8, 3692.
- 33Y. Zhang, X. Ge, Q. Kang, Z. Kong, Y. Wang, L. Zhan, Chem. Eng. J. 2020, 393, 124570.
- 34B. Liu, S. Huang, D. Kong, J. Hu, H. Y. Yang, J. Mater. Chem. 2019, 7, 7604.
- 35W. Zhang, D. Hong, Z. Su, S. Yi, L. Tian, B. Niu, Y. Zhang, D. Long, Energy Stor. Mater. 2022, 53, 404.
- 36Y. Gong, Y. Wang, Z. Fang, S. Zhao, Y.-s. He, W. Zhang, J. Mu, L. Zhang, Z.-F. Ma, Chem. Eng. J. 2022, 446, 136943.
- 37D. Lei, W. Shang, X. Zhang, Y. Li, S. Qiao, Y. Zhong, X. Deng, X. Shi, Q. Zhang, C. Hao, X. Song, F. Zhang, ACS Nano 2021, 15, 20478.
- 38P. Guo, W. Chen, Y. Zhou, F. Xie, G. Qian, P. Jiang, D. He, X. Lu, Small 2022, 18, 2205158.
- 39J. Zhang, G. Xu, Q. Zhang, X. Li, Y. Yang, L. Yang, J. Huang, G. Zhou, Adv. Sci. 2022, 9, 2201579.
- 40T. S. Sahu, G. A. V, I. Pal, S. Sau, M. Gautam, B. R. K. Nanda, S. Mitra, Small 2022, 18, 2203222.
- 41R. Fang, H. Xu, B. Xu, X. Li, Y. Li, J. B. Goodenough, Adv. Funct. Mater. 2020, 31, 2001812.
- 42J. Cai, Y. Song, X. Chen, Z. Sun, Y. Yi, J. Sun, Q. Zhang, J. Mater. Chem. 2020, 8, 1757.
- 43C. Dai, L. Hu, X. Li, Q. Xu, R. Wang, H. Liu, H. Chen, S.-J. Bao, Y. Chen, G. Henkelman, C. M. Li, M. Xu, Nano Energy 2018, 53, 354.
- 44D. Tian, X. Song, Y. Qiu, X. Sun, B. Jiang, C. Zhao, Y. Zhang, X. Xu, L. Fan, N. Zhang, ACS Nano 2021, 15, 16515.
- 45Z. Shen, Z. Zhang, M. Li, Y. Yuan, Y. Zhao, S. Zhang, C. Zhong, J. Zhu, J. Lu, H. Zhang, ACS Nano 2020, 14, 6673.