Electronic Structure Regulation and Surface Reconstruction of Iron Diselenide for Enhanced Oxygen Evolution Activity
Yuan Huang
State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057 China
Search for more papers by this authorLi Zhang
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLi-Wen Jiang
State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057 China
Search for more papers by this authorXiao-Long Liu
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Ting Tan
University of Chinese Academy of Sciences, Beijing, 100049 China
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, 100190 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hong Liu
State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, Shandong, 250022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jian-Jun Wang
State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYuan Huang
State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057 China
Search for more papers by this authorLi Zhang
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLi-Wen Jiang
State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057 China
Search for more papers by this authorXiao-Long Liu
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Ting Tan
University of Chinese Academy of Sciences, Beijing, 100049 China
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, 100190 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hong Liu
State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, Shandong, 250022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jian-Jun Wang
State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Regulating the electronic structure of active sites and monitoring the evolution of the active component is essential to improve the intrinsic activity of catalysts for electrochemical reactions. Herein, a highly efficient pre-electrocatalyst of iron diselenide with rich Se vacancies achieved by phosphorus doping (denoted as P-FeSe2) for oxygen evolution reaction (OER) is reported. Systematically experimental and theoretical results show that the formed Se vacancies with phosphorus doping can synergistically modulate the electronic structure of FeSe2 and facilitate OER kinetics with the resulting enhanced electrical conductivity and electrochemical surface area. Importantly, the in situ formed FeOOH species on the surface of the P-FeSe2 nanorods (denoted as P-FeOOH(Se)) during the OER process acts as an active component to efficiently catalyze OER and exhibits a low overpotential of 217 mV to reach 10 mA cm-2 with good durability. Promisingly, an alkaline electrolyzer assembled with P-FeOOH(Se) and Pt/C electrodes requires an ultra-low cell voltage of 1.50 V at 10 mA cm-2 for overall water splitting, which is superior to the RuO2 || Pt/C counterpart and most of the state-of-the-art electrolyzers, demonstrating the high potential of the fabricated electrocatalyst by P doping strategy to explore more highly efficient selenide-based catalysts for various reactions.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202302970-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F. P. G. d. Arquer, C. T. Dinh, F. Fan, M. Yuan, E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. D. Luna, A. Janmohamed, H. L. Xin, H. Yang, A. Vojvodic, E. H. Sargent, Science 2016, 352, 333; b) S. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16.
- 2a) W.-J. Jiang, T. Tang, Y. Zhang, J.-S. Hu, Acc. Chem. Res. 2020, 53, 1111; b) Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 3a) J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, Z. J. Xu, Chem. Soc. Rev. 2020, 49, 2196;
b) X. Liu, L. Dai, Nat. Rev. Mater. 2016, 1, 16064;
c) X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148;
d) F. Gao, J. He, H. Wang, J. Lin, R. Chen, K. Yi, F. Huang, Z. Lin, M. Wang, Nano Res. Energy 2022, 1, e9120029;
10.26599/NRE.2022.9120029 Google Scholare) P. Yi, Y. Song, C. Li, R. Liu, J. Sun, Appl. Surf. Sci. 2023, 619, 156789; f) Z.-H. Yin, Y. Huang, L.-W. Jiang, C. Meng, Y.-Z. Wu, H. Liu, J.-J. Wang, Small Struct. 2023, 2300028, https://doi.org/10.1002/sstr.202300028.10.1002/sstr.202300028 Google Scholar
- 4W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Energy Environ. Sci. 2015, 8, 1404.
- 5a) Y. Pi, N. Zhang, S. Guo, J. Guo, X. Huang, Nano Lett. 2016, 16, 4424; b) Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 2012, 3, 399; c) C. Wang, A. Schechter, L. Feng, Nano Res. Energy 2023, 2, e9120056; d) S.-Y. Yuan, L.-W. Jiang, J.-S. Hu, H. Liu, J.-J. Wang, Nano Lett. 2023, 23, 2354.
- 6a) K. Zhang, R. Zou, Small 2021, 17, 2100129; b) S. Li, E. Li, X. An, X. Hao, Z. Jiang, G. Guan, Nanoscale 2021, 13, 12788.
- 7a) L. Lv, Z. Li, K.-H. Xue, Y. Ruan, X. Ao, H. Wan, X. Miao, B. Zhang, J. Jiang, C. Wang, K. (.K.) Ostrikov, Nano Energy 2018, 47, 275; b) Y. Huang, L.-W. Jiang, B.-Y. Shi, K. M. Ryan, J.-J. Wang, Adv. Sci. 2021, 8, 2101775.
- 8a) Y. Huang, L.-W. Jiang, X.-L. Liu, T. Tan, H. Liu, J.-J. Wang, Appl. Catal., B 2021, 299, 120678; b) Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye, Y. Xie, J. Am. Chem. Soc. 2014, 136, 15670.
- 9W. Yang, S. Wang, K. Zhao, Y. Hua, J. Qiao, W. Luo, L. Li, J. Hao, W. Shi, J. Colloid Interface Sci. 2021, 602, 115.
- 10L. Zhang, C. Lu, F. Ye, R. Pang, Y. Liu, Z. Wu, Z. Shao, Z. Sun, L. Hu, Adv. Mater. 2021, 33, 2007523.
- 11a) X. Xu, F. Song, X. Hu, Nat. Commun. 2016, 7, 12324; b) Y. Li, X. Du, J. Huang, C. Wu, Y. Sun, G. Zou, C. Yang, J. Xiong, Small 2019, 15, 1901980; c) S. Jin, ACS Energy Lett. 2017, 2, 1937; d) X. Zou, Y. Wu, Y. Liu, D. Liu, W. Li, L. Gu, H. Liu, P. Wang, L. Sun, Y. Zhang, Chem 2018, 4, 1139.
- 12S. Niu, W.-J. Jiang, Z. Wei, T. Tang, J. Ma, J.-S. Hu, L.-J. Wan, J. Am. Chem. Soc. 2019, 141, 7005.
- 13Y.-J. Tang, Y. Wang, K. Zhou, J. Mater. Chem. A 2020, 8, 7925.
- 14a) L. Meng, D. Rao, W. Tian, F. Cao, X. Yan, L. Li, Angew. Chem., Int. Ed. 2018, 57, 16882; b) Y. Wen, J. Qi, D. Zhao, J. Liu, P. Wei, X. Kang, X. Li, Appl. Catal., B 2021, 293, 120196.
- 15P. Ge, H. Hou, S. Li, L. Yang, X. Ji, Adv. Funct. Mater. 2018, 28, 1801765.
- 16J. Lin, H. Wang, J. Cao, F. He, J. Feng, J. Qi, J. Colloid Interface Sci. 2020, 571, 260.
- 17J. Zhang, X. Shang, H. Ren, J. Chi, H. Fu, B. Dong, C. Liu, Y. Chai, Adv. Mater. 2019, 31, 1905107.
- 18a) J. Yao, Y. Liu, H. Zhang, L. Ma, T. Meng, N. Li, J. Jiang, J. Zhu, C. M. Li, ACS Appl. Mater. Interfaces. 2019, 11, 42032; b) B. Ma, Z. Nie, C. Liu, M. Kang, F. Bardelli, F. Chen, L. Charlet, Sci. China: Chem. 2014, 57, 1300.
- 19C. Liu, D. Jia, Q. Hao, X. Zheng, Y. Li, C. Tang, H. Liu, J. Zhang, X. Zheng, ACS Appl. Mater. Interfaces 2019, 11, 27667.
- 20J. Ye, X. Li, G. Xia, G. Gong, Z. Zheng, C. Chen, C. Hu, J. Mater. Sci. Technol. 2021, 77, 100.
- 21a) Y. Zhang, S.-Y. Yuan, Y. Zou, T.-T. Li, H. Liu, J.-J. Wang, Appl. Mater. Today 2022, 28, 101552; b) Y. Huang, L.-W. Jiang, H. Liu, J.-J. Wang, Chem. Eng. J. 2022, 441, 136121; c) D. Zhu, L. Wang, M. Qiao, J. Liu, Chem. Commun. 2020, 56, 7159.
- 22T. Zhai, L. Wan, S. Sun, Q. Chen, J. Sun, Q. Xia, H. Xia, Adv. Mater. 2017, 29, 1604167.
- 23C. Du, Y. Men, X. Hei, J. Yu, G. Cheng, W. Luo, ChemElectroChem 2018, 5, 2564.
- 24N. Yao, P. Li, Z. Zhou, R. Meng, G. Cheng, W. Luo, Small 2019, 15, 1901993.
- 25Z. Jing, Q. Zhao, D. Zheng, H. Xu, L. Sun, J. Geng, Q. Zhou, J. Lin, Chem. Eng. J. 2021, 418, 129426.
- 26Y. Shi, W. Du, W. Zhou, C. Wang, S. Lu, S. Lu, B. Zhang, Angew. Chem., Int. Ed. 2020, 59, 22470.
- 27Y. Huang, J.-J. Wang, Y. Zou, L.-W. Jiang, X.-L. Liu, W.-J. Jiang, H. Liu, J.-S. Hu, Chin. J. Catal. 2021, 42, 1395.
- 28a) R. Gao, H. Zhang, D. Yan, Nano Energy 2017, 31, 90; b) W. Li, Y. Niu, X. Wu, F. Wu, T. Li, W. Hu, ACS Sustainable Chem. Eng. 2020, 8, 4658; c) G. Wu, W. Chen, X. Zheng, D. He, Y. Luo, X. Wang, J. Yang, Y. Wu, W. Yan, Z. Zhuang, X. Hong, Y. Li, Nano Energy 2017, 38, 167; d) I. H. Kwak, H. S. Im, D. M. Jang, Y. W. Kim, K. Park, Y. R. Lim, E. H. Cha, J. Park, ACS Appl. Mater. Interfaces 2016, 8, 5327; e) W.-K. Gao, J.-H. Lin, K. Wang, Z.-Z. Liu, J.-F. Qin, J.-Y. Xie, X.-Y. Zhang, Y.-M. Chai, B. Dong, Mater. Lett. 2018, 229, 248; f) C. Panda, P. W. Menezes, C. Walter, S. Yao, M. E. Miehlich, V. Gutkin, K. Meyer, M. Driess, Angew. Chem., Int. Ed. 2017, 56, 10506; g) F. Yang, X. Chen, Z. Li, D. Wang, L. Liu, J. Ye, ACS Appl. Energy Mater. 2020, 3, 3577; h) Z. Yang, J.-Y. Zhang, Z. Liu, Z. Li, L. Lv, X. Ao, Y. Tian, Y. Zhang, J. Jiang, C. Wang, ACS Appl. Mater. Interfaces 2017, 9, 40351.
- 29C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977.
- 30W. Gao, Y. Zou, Y. Zang, X. Zhao, W. Zhou, Y. Dai, H. Liu, J.-J. Wang, Y. Ma, Y. Sang, Chem. Eng. J. 2023, 455, 140821.
- 31a) H. Guo, A. S. Barnard, Phys. Chem. Chem. Phys. 2011, 13, 17864; b) M. A. Gaikwad, U. V. Ghorpade, U. P. Suryawanshi, P. V. Kumar, S. Jang, J. S. Jang, L. Tran, J.-S. Lee, H. Bae, S. W. Shin, M. P. Suryawanshi, J. H. Kim, ACS Appl. Mater. Interfaces 2023, 15, 21123; c) K. Jiang, M. Luo, M. Peng, Y. Yu, Y.-R. Lu, T.-S. Chan, P. Liu, F. M. F. de Groot, Y. Tan, Nat. Commun. 2020, 11, 2701; d) Y. Li, X. Zhang, Z. Wu, H. Sheng, C. Li, H. Li, L. Cao, B. Dong, J. Mater. Chem. A 2021, 9, 23545.