A Halogen-Bonded Organic Framework (XOF) Emissive Cocrystal for Acid Vapor and Explosive Sensing, and Iodine Capture
Suman Maji
Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorCorresponding Author
Ramalingam Natarajan
Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
E-mail: [email protected]
Search for more papers by this authorSuman Maji
Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorCorresponding Author
Ramalingam Natarajan
Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
E-mail: [email protected]
Search for more papers by this authorAbstract
There is a strong and urgent need for efficient materials that can capture radioactive iodine atoms from nuclear waste. This work presents a novel strategy to develop porous materials for iodine capture by employing halogen bonding, mechanochemistry and crystal engineering. 3D halogen-bonded organic frameworks (XOFs) with guest-accessible permanent pores are exciting targets in crystal engineering for developing functional materials, and this work reports the first example of such a structure. The new-found XOF, namely TIEPE-DABCO, exhibits enhanced emission in the solid state and turn-off emission sensing of acid vapors and explosives like picric acid in nanomolar quantity. TIEPE-DABCO captures iodine from the gas phase (3.23 g g−1 at 75 °C and 1.40 g g−1 at rt), organic solvents (2.1 g g−1), and aqueous solutions (1.8 g g−1 in the pH range of 3–8); the latter with fast kinetics. The captured iodine can be retained for more than 7 days without any leaching, but readily released using methanol, when required. TIEPE-DABCO can be recycled for iodine capture several times without any loss of storage capacity. The results presented in this work demonstrate the potential of mechanochemical cocrystal engineering with halogen bonding as an approach to develop porous materials for iodine capture and sensing.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202302902-sup-0001-SuppMat.pdf10.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. C. Küpper, M. C. Feiters, B. Olofsson, T. Kaiho, S. Yanagida, M. B. Zimmermann, L. J. Carpenter, G. W. Luther, Z. Lu, M. Jonsson, L. Kloo, Angew. Chem., Int. Ed. 2011, 50, 11598.
- 2B. J. Riley, J. D. Vienna, D. M. Strachan, J. S. McCloy, J. L. Jerden, J. Nucl. Mater. 2016, 470, 307.
- 3J. Huve, A. Ryzhikov, H. Nouali, V. Lalia, G. Augé, T. J. Daou, RSC Adv. 2018, 8, 29248.
- 4X. Zhang, J. Maddock, T. M. Nenoff, M. A. Denecke, S. Yang, M. Schröder, Chem. Soc. Rev. 2022, 51, 3243.
- 5K. W. Chapman, P. J. Chupas, T. M. Nenoff, J. Am. Chem. Soc. 2010, 132, 8897.
- 6D. F. Sava, M. A. Rodriguez, K. W. Chapman, P. J. Chupas, J. A. Greathouse, P. S. Crozier, T. M. Nenoff, J. Am. Chem. Soc. 2011, 133, 12398.
- 7B. Guo, F. Li, C. Wang, L. Zhang, D. Sun, J. Mat. Chem. A 2019, 7, 13173.
- 8P. Chen, X. He, M. Pang, X. Dong, S. Zhao, W. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 20429.
- 9Z.-J. Li, Y. Ju, H. Lu, X. Wu, X. Yu, Y. Li, X. Wu, Z.-H. Zhang, J. Lin, Y. Qian, M.-Y. He, J.-Q. Wang, Chem. - Eur. J. 2021, 27, 1286.
- 10P. H. M. Andrade, N. Henry, C. Volkringer, T. Loiseau, H. Vezin, M. Hureau, A. Moissette, ACS Appl. Mater. Interfaces 2022, 14, 29916.
- 11C. Zwanziger, W. D. do Pim, A. A. Kitos, J. S. Ovens, P. J. Pallister, M. Murugesu, Chem. Commun. 2022, 58, 12700.
- 12S.-T. Wang, Y.-J. Liu, C.-Y. Zhang, F. Yang, W.-H. Fang, J. Zhang, Chem. - Eur. J. 2023, 29, e202202638.
- 13P. Wang, Q. Xu, Z. Li, W. Jiang, Q. Jiang, D. Jiang, Adv. Mater. 2018, 30, 1801991.
- 14X. Guo, Y. Li, M. Zhang, K. Cao, Y. Tian, Y. Qi, S. Li, K. Li, X. Yu, L. Ma, Angew. Chem., Int. Ed. 2020, 59, 22697.
- 15Y. Xie, T. Pan, Q. Lei, C. Chen, X. Dong, Y. Yuan, J. Shen, Y. Cai, C. Zhou, I. Pinnau, Y. Han, Angew. Chem., Int. Ed. 2021, 60, 22432.
- 16L. Zhai, D. Han, J. Dong, W. Jiang, R. Nie, X. Yang, X. Luo, Z. Li, Macromol. Rapid Commun. 2021, 42, 2100032.
- 17Y. Yang, C. Tu, H. Yin, J. Liu, F. Cheng, F. Luo, Molecules 2022, 27, 9045.
- 18Y. Xie, T. Pan, Q. Lei, C. Chen, X. Dong, Y. Yuan, W. A. Maksoud, L. Zhao, L. Cavallo, I. Pinnau, Y. Han, Nat. Commun. 2022, 13, 2878.
- 19K. Cheng, H. Li, J.-R. Wang, P.-Z. Li, Y. Zhao, Small 2023, 19, 2301998.
- 20Y. Wang, Y. Jin, W. Xian, X. Zuo, S. Wang, Q. Sun, J. Mater. Chem. A 2022, 10, 18730.
- 21Y. Lin, X. Jiang, S. T. Kim, S. B. Alahakoon, X. Hou, Z. Zhang, C. M. Thompson, R. A. Smaldone, C. Ke, J. Am. Chem. Soc. 2017, 139, 7172.
- 22M. Zhang, J. Samanta, B. A. Atterberry, R. Staples, A. J. Rossini, C. Ke, Angew. Chem., Int. Ed. 2022, 61, e202214189.
- 23S. Yao, W.-H. Fang, Y. Sun, S.-T. Wang, J. Zhang, J. Am. Chem. Soc. 2021, 143, 2325.
- 24C.-H. Liu, W.-H. Fang, Y. Sun, S. Yao, S.-T. Wang, D. Lu, J. Zhang, Angew. Chem., Int. Ed. 2021, 60, 21426.
- 25Y.-J. Liu, Y.-F. Sun, S.-H. Shen, S.-T. Wang, Z.-H. Liu, W.-H. Fang, D. S. Wright, J. Zhang, Nat. Commun. 2022, 13, 6632.
- 26P. Wei, X. He, Z. Zheng, D. He, Q. Li, J. Gong, J. Zhang, H. H. Y. Sung, I. D. Williams, J. W. Y. Lam, M. Liu, B. Z. Tang, Angew. Chem., Int. Ed. 2021, 60, 7148.
- 27X. Yang, C. Li, M. Giorgi, D. Siri, X. Bugaut, B. Chatelet, D. Gigmes, M. Yemloul, V. Hornebecq, A. Kermagoret, S. Brasselet, A. Martinez, D. Bardelang, Angew. Chem., Int. Ed. 2022, 61, e202214039.
- 28Y.-D. Yang, X.-L. Chen, J. L. Sessler, H.-Y. Gong, J. Am. Chem. Soc. 2021, 143, 2315.
- 29K. Jie, Y. Zhou, E. Li, Z. Li, R. Zhao, F. Huang, J. Am. Chem. Soc. 2017, 139, 15320.
- 30D. Luo, Y. He, J. Tian, J. L. Sessler, X. Chi, J. Am. Chem. Soc. 2022, 144, 113.
- 31W. X. Wu, H. C. Liu, W. J. Jin, Chem. - Eur. J. 2022, 28, e202103336.
- 32P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem., Int. Ed. 2008, 47, 6114.
- 33L. C. Gilday, S. W. Robinson, T. A. Barendt, M. J. Langton, B. R. Mullaney, P. D. Beer, Chem. Rev. 2015, 115, 7118.
- 34G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478.
- 35A. Mukherjee, S. Tothadi, G. R. Desiraju, Acc. Chem. Res. 2014, 47, 2514.
- 36J.-C. Christopherson, F. Topić, C. J. Barrett, T. Friščić, Cryst. Growth Des. 2018, 18, 1245.
- 37C. C. Robertson, J. S. Wright, E. J. Carrington, R. N. Perutz, C. A. Hunter, L. Brammer, Chem. Sci. 2017, 8, 5392.
- 38R. Thaimattam, C. V. K. Sharma, A. Clearfield, G. R. Desiraju, Cryst. Growth Des. 2001, 1, 103.
- 39P. Metrangolo, F. Meyer, T. Pilati, D. M. Proserpio, G. Resnati, Chemistry – A European Journal 2007, 13, 5765.
- 40K. Raatikainen, J. Huuskonen, M. Lahtinen, P. Metrangolo, K. Rissanen, Chem. Commun. 2009, 45, 2160.
10.1039/b901473j Google Scholar
- 41J. Lieffrig, H. M. Yamamoto, T. Kusamoto, H. Cui, O. Jeannin, M. Fourmigué, R. Kato, Cryst. Growth Des. 2011, 11, 4267.
- 42J. Martí-Rujas, L. Colombo, J. Lü, A. Dey, G. Terraneo, P. Metrangolo, T. Pilati, G. Resnati, Chem. Commun. 2012, 48, 8207.
- 43L. González, S. Graus, R. M. Tejedor, P. López, J. Elguero, J. L. Serrano, S. Uriel, CrystEngComm 2018, 20, 3167.
- 44C. A. Gunawardana, M. Đaković, C. B. Aakeröy, Chem. Commun. 2018, 54, 607.
- 45S. Shankar, O. Chovnik, L. J. W. Shimon, M. Lahav, M. E. van der Boom, Cryst. Growth Des. 2018, 18, 1967.
- 46W. X. Wu, H. Wang, W. J. Jin, Cryst. Growth Des. 2018, 18, 6742.
- 47N. Chongboriboon, K. Samakun, T. Inprasit, F. Kielar, W. Dungkaew, L. W.-Y. Wong, H. H.-Y. Sung, D. B. Ninković, S. D. Zarić, K. Chainok, CrystEngComm 2019, 22, 24.
- 48P. Teng, G. M. Gray, M. Zheng, S. Singh, X. Li, L. Wojtas, A. van der Vaart, J. Cai, Angew. Chem., Int. Ed. 2019, 58, 7778.
- 49S. M. Oburn, C. L. Santana, E. Elacqua, R. H. Groeneman, CrystEngComm 2020, 22, 4349.
- 50M. C. Gullo, L. Baldini, A. Casnati, L. Marchiò, Cryst. Growth Des. 2020, 20, 3611.
- 51L. Pop, I. G. Grosu, M. Miclăuş, N. D. Hădade, A. Pop, A. Bende, A. Terec, M. Barboiu, I. Grosu, Cryst. Growth Des. 2021, 21, 1045.
- 52M. C. Gullo, L. Marchiò, A. Casnati, L. Baldini, CrystEngComm 2022, 24, 3770.
- 53P. Metrangolo, Y. Carcenac, M. Lahtinen, T. Pilati, K. Rissanen, A. Vij, G. Resnati, Science 2009, 323, 1461.
- 54V. I. Nikolayenko, D. C. Castell, D. P. van Heerden, L. J. Barbour, Angew. Chem., Int. Ed. 2018, 57, 12086.
- 55G. Gong, S. Lv, J. Han, F. Xie, Q. Li, N. Xia, W. Zeng, Y. Chen, L. Wang, J. Wang, S. Chen, Angew. Chem., Int. Ed. 2021, 60, 14831.
- 56N. S. Soldatova, P. S. Postnikov, D. M. Ivanov, O. V. Semyonov, O. S. Kukurina, O. Guselnikova, Y. Yamauchi, T. Wirth, V. V. Zhdankin, M. S. Yusubov, R. M. Gomila, A. Frontera, G. Resnati, V. Yu. Kukushkin, Chem. Sci. 2022, 13, 5650.
- 57K. Raatikainen, K. Rissanen, Chem. Sci. 2012, 3, 1235.
- 58B. Ji, D. Zhang, R. Liang, G. Kang, Q. Zhu, D. Deng, Cryst. Growth Des. 2021, 21, 482.
- 59Y. Huang, Z. Wang, Z. Chen, Q. Zhang, Angew. Chem., Int. Ed. 2019, 58, 9696.
- 60G.-L. Yang, X.-L. Jiang, H. Xu, B. Zhao, Small 2021, 17, 2005327.
- 61T. Skorjanc, D. Shetty, M. Valant, ACS Sens. 2021, 6, 1461.
- 62L. Ascherl, E. W. Evans, J. Gorman, S. Orsborne, D. Bessinger, T. Bein, R. H. Friend, F. Auras, J. Am. Chem. Soc. 2019, 141, 15693.
- 63I. Hisaki, Y. Suzuki, E. Gomez, Q. Ji, N. Tohnai, T. Nakamura, A. Douhal, J. Am. Chem. Soc. 2019, 141, 2111.
- 64R. Bu, L. Zhang, X.-Y. Liu, S.-L. Yang, G. Li, E.-Q. Gao, ACS Appl. Mater. Interfaces 2021, 13, 26431.
- 65Z. Chen, K. Wang, X. Hu, P. Shi, Z. Guo, H. Zhan, ACS Appl. Mater. Interfaces 2021, 13, 1145.
- 66Z.-H. Zhu, Z. Ni, H.-H. Zou, G. Feng, B. Z. Tang, Adv. Funct. Mater. 2021, 31, 2106925.
- 67G. Gong, J. Zhao, Y. Chen, F. Xie, F. Lu, J. Wang, L. Wang, S. Chen, J. Mater. Chem. A 2022, 10, 10586.
- 68M. Fabin, M. Łapkowski, T. Jarosz, Appl. Sci. 2023, 13, 3991.
- 69C. B. Aakeröy, M. Baldrighi, J. Desper, P. Metrangolo, G. Resnati, Chem. - Eur. J. 2013, 19, 16240.
- 70Z. Zhao, H. Zhang, J. W. Y. Lam, B. Z. Tang, Angew. Chem., Int. Ed. 2020, 59, 9888.
- 71J. Lieffrig, O. Jeannin, M. Fourmigué, J. Am. Chem. Soc. 2013, 135, 6200.
- 72E. Bosch, Cryst. Growth Des. 2014, 14, 126.
- 73O. Dumele, D. Wu, N. Trapp, N. Goroff, F. Diederich, Org. Lett. 2014, 16, 4722.
- 74C.-F. Ng, H.-F. Chow, T. C. W. Mak, Angew. Chem., Int. Ed. 2018, 57, 4986.
- 75L. Turunen, F. Pan, N. K. Beyeh, J. F. Trant, R. H. A. Ras, K. Rissanen, Cryst. Growth Des. 2018, 18, 513.
- 76V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Cryst. Growth Des. 2014, 14, 3576.
- 77M. H. Chua, K. L. O. Chin, X. J. Loh, Q. Zhu, J. Xu, ACS Nano 2023, 17, 1845.
- 78N. Seal, A. S. Palakkal, M. Singh, R. Goswami, R. S. Pillai, S. Neogi, ACS Appl. Mater. Interfaces 2021, 13, 28378.
- 79Z. Qiao, H. Han, X. Li, X. Wang, T. Lan, R. Wang, W. Ji, ACS Appl. Nano Mater 2022, 5, 11465.
- 80X. Liu, Y. Han, G. Wang, Y. Wang, J. Chen, Y. Shu, J.-H. Wang, H. Qiu, ACS Appl. Nano Mater 2022, 5, 6422.
- 81S. Chongdar, U. Mondal, T. Chakraborty, P. Banerjee, A. Bhaumik, ACS Appl. Mater. Interfaces 2023, 15, 14575.
- 82X. Xin, Y. Jing, P. Li, X. Zhang, J. Li, L. Li, L. Zhang, Cryst. Growth Des. 2023, 23, 3988.