Insights to Carrier-Phonon Interactions in Lead Halide Perovskites via Multi-Pulse Manipulation
Minjun Feng
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Search for more papers by this authorSenyun Ye
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Search for more papers by this authorJia Wei Melvin Lim
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, S2-B3a-01, Singapore, 639798 Singapore
Search for more papers by this authorYuanyuan Guo
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Search for more papers by this authorRui Cai
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Search for more papers by this authorQiannan Zhang
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Search for more papers by this authorHuajun He
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Search for more papers by this authorCorresponding Author
Tze Chien Sum
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
E-mail: [email protected]
Search for more papers by this authorMinjun Feng
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Search for more papers by this authorSenyun Ye
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Search for more papers by this authorJia Wei Melvin Lim
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, S2-B3a-01, Singapore, 639798 Singapore
Search for more papers by this authorYuanyuan Guo
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Search for more papers by this authorRui Cai
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Search for more papers by this authorQiannan Zhang
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Search for more papers by this authorHuajun He
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
Search for more papers by this authorCorresponding Author
Tze Chien Sum
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371 Singapore
E-mail: [email protected]
Search for more papers by this authorAbstract
A fundamental understanding of the hot-carrier dynamics in halide perovskites is crucial for unlocking their prospects for next generation photovoltaics. Presently, a coherent picture of the hot carrier cooling process remains patchy due to temporally overlapping contributions from many-body interactions, multi-bands, band gap renormalization, Burstein–Moss shift etc. Pump-push-probe (PPP) spectroscopy recently emerges as a powerful tool complementing the ubiquitous pump-probe (PP) spectroscopy in the study of hot-carrier dynamics. However, limited information from PPP on the initial excitation density and carrier temperature curtails its full potential. Herein, this work bridges this gap in PPP with a unified model that retrieves these essential hot carrier metrics like initial carrier density and carrier temperature under the push conditions, thus permitting direct comparison with traditional PP spectroscopy. These results are well-fitted by the phonon bottleneck model, from which the longitudinal optical phonon scattering time τLO, for MAPbBr3 and MAPbI3 halide perovskite thin film samples are determined to be 240 ± 10 and 370 ± 10 fs, respectively.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are openly available in DR-NTU(Data) at https://doi.org/10.21979/N9/POXXQE.
Supporting Information
Filename | Description |
---|---|
smll202301831-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344.
- 2J. Shi, Y. Li, Y. Li, D. Li, Y. Luo, H. Wu, Q. Meng, Joule 2018, 2, 879.
- 3L. M. Herz, ACS Energy Lett. 2017, 2, 1539.
- 4D. Liu, T. L. Kelly, Nat. Photonics 2014, 8, 133.
- 5G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T. C. Sum, Nat. Mater. 2014, 13, 476.
- 6G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. L. Yeow, T. C. Sum, W. Huang, Nat. Commun. 2017, 8, 14558.
- 7J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Graetzel, A. Abate, W. Tress, A. Hagfeldt, Science (Washington, DC, U. S.) 2017, 358, 739.
- 8Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. van de Lagemaat, J. M. Luther, M. C. Beard, Nat. Photonics 2015, 10, 53.
- 9S. D. Verma, Q. Gu, A. Sadhanala, V. Venugopalan, A. Rao, ACS Energy Lett. 2019, 4, 736.
- 10M. Li, J. Fu, Q. Xu, T. C. Sum, Adv. Mater. 2019, 31, 1802486.
- 11M. C. Beard, J. M. Luther, O. E. Semonin, A. J. Nozik, Acc. Chem. Res. 2013, 46, 1252.
- 12M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Grätzel, S. Mhaisalkar, N. Mathews, T. C. Sum, Nat. Commun. 2017, 8, 14350.
- 13M. Li, R. Begum, J. Fu, Q. Xu, T. M. Koh, S. A. Veldhuis, M. Grätzel, N. Mathews, S. Mhaisalkar, T. C. Sum, Nat. Commun. 2018, 9, 4197.
- 14S. Kahmann, M. A. Loi, J. Mater. Chem. C 2019, 7, 2471.
- 15P. Papagiorgis, A. Manoli, S. Michael, C. Bernasconi, M. I. Bodnarchuk, M. V. Kovalenko, A. Othonos, G. Itskos, ACS Nano 2019, 13, 5799.
- 16H.-H. Fang, S. Adjokatse, S. Shao, J. Even, M. A. Loi, Nat. Commun. 2018, 9, 243.
- 17J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson, G. Conibeer, Nat. Commun. 2017, 8, 14120.
- 18H. Zhu, K. Miyata, Y. Fu, J. Wang, P. P. Joshi, D. Niesner, K. W. Williams, S. Jin, X. Y. Zhu, Science 2016, 353, 1409.
- 19J. Fu, Q. Xu, G. Han, B. Wu, C. H. A. Huan, M. L. Leek, T. C. Sum, Nat. Commun. 2017, 8, 1300.
- 20J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, F. Deschler, Nat. Commun. 2017, 8, 376.
- 21D. Zhao, H. Hu, R. Haselsberger, R. A. Marcus, M.-E. Michel-Beyerle, Y. M. Lam, J.-X. Zhu, C. La-o-vorakiat, M. C. Beard, E. E. M. Chia, ACS Nano 2019, 13, 8826.
- 22P. Guyot-Sionnest, M. Shim, C. Matranga, M. Hines, Phys. Rev. B 1999, 60, R2181.
- 23V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, Phys. Rev. B 2000, 61, R13349.
- 24T. R. Hopper, A. Gorodetsky, J. M. Frost, C. Müller, R. Lovrincic, A. A. Bakulin, ACS Energy Lett. 2018, 3, 2199.
- 25S. S. Lim, D. Giovanni, Q. Zhang, A. Solanki, N. F. Jamaludin, J. W. M. Lim, N. Mathews, S. Mhaisalkar, M. S. Pshenichnikov, T. C. Sum, Sci. Adv. 2019, 5, eaax3620.
- 26F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, R. H. Friend, J. Phys. Chem. Lett. 2014, 5, 1421.
- 27K. Chen, A. J. Barker, F. L. C. Morgan, J. E. Halpert, J. M. Hodgkiss, J. Phys. Chem. Lett. 2015, 6, 153.
- 28M. B. Price, J. Butkus, T. C. Jellicoe, A. Sadhanala, A. Briane, J. E. Halpert, K. Broch, J. M. Hodgkiss, R. H. Friend, F. Deschler, Nat. Commun. 2015, 6, 8420.
- 29M. T. Trinh, X. Wu, D. Niesner, X. Y. Zhu, J. Mater. Chem. A 2015, 3, 9285.
- 30S. Schmitt-Rink, D. S. Chemla, Phys. Rev. Lett. 1986, 57, 2752.
- 31W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, T. C. Sum, Nat. Commun. 2017, 8, 15198.
- 32T. Palmieri, E. Baldini, A. Steinhoff, A. Akrap, M. Kollár, E. Horváth, L. Forró, F. Jahnke, M. Chergui, Nat. Commun. 2020, 11, 850.
- 33K. T. Munson, C. Grieco, E. R. Kennehan, R. J. Stewart, J. B. Asbury, ACS Energy Lett. 2017, 2, 651.
- 34M. Fox, Optical properties of solids, Oxford University Press, New York 2001.
- 35J. W. M. Lim, D. Giovanni, M. Righetto, M. Feng, S. G. Mhaisalkar, N. Mathews, T. C. Sum, J. Phys. Chem. Lett. 2020, 11, 2743.
- 36J. M. Frost, L. D. Whalley, A. Walsh, ACS Energy Lett. 2017, 2, 2647.
- 37V. Klimov, P. Haring Bolivar, H. Kurz, Phys. Rev. B 1995, 52, 4728.
- 38A. Burgos-Caminal, J. M. Moreno-Naranjo, A. R. Willauer, A. A. Paraecattil, A. Ajdarzadeh, J.-E. Moser, J. Phys. Chem. C 2020, 11, 7692.