A Self-Templated Design Approach toward Multivariate Metal–Organic Frameworks for Enhanced Oxygen Evolution
Pengfei Dong
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorYuming Gu
Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorGehua Wen
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorRengan Luo
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Songsong Bao
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jing Ma
Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianping Lei
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorPengfei Dong
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorYuming Gu
Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorGehua Wen
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorRengan Luo
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Songsong Bao
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jing Ma
Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianping Lei
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Multivariate metal–organic framework (MOF) is an ideal electrocatalytic material due to the synergistic effect of multiple metal active sites. In this study, a series of ternary M-NiMOF (M = Co, Cu) through a simple self-templated strategy that the Co/Cu MOF isomorphically grows in situ on the surface of NiMOF is designed. Owing to the electron rearrange of adjacent metals, the ternary CoCu-NiMOFs demonstrate the improved intrinsic electrocatalytic activity. At optimized conditions, the ternary Co3Cu-Ni2MOFs nanosheets give the excellent oxygen evolution reaction (OER) performance of current density of 10 mA cm−2 at low overpotential of 288 mV with a Tafel slope of 87 mV dec−1, which is superior to that of bimetallic nanosheet and ternary microflowers. The low free energy change of potential-determining step identifies that the OER process is favorable at Cu–Co concerted sites along with strong synergistic effect of Ni nodes. Partially oxidized metal sites also reduce the electron density, thus accelerating the OER catalytic rate. The self-templated strategy provides a universal tool to design multivariate MOF electrocatalysts for highly efficient energy transduction.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202301473-sup-0001-SuppMat.pdf4.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Pan, K. Sun, S. J. Liu, X. Cao, K. L. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Q. Liu, D. S. Wang, Q. Peng, C. Chen, Y. D. Li, J. Am. Chem. Soc. 2018, 140, 2610.
- 2J. Liang, X. T. Gao, B. Guo, Y. Ding, J. W. Yan, Z. X. Guo, E. C. M. Tse, J. X. Liu, Angew. Chem., Int. Ed. 2021, 60, 12770.
- 3B. Zhang, Y. J. Zheng, T. Ma, C. D. Yang, Y. F. Peng, Z. H. Zhou, M. Zhou, S. Li, Y. H. Wang, C. Cheng, Adv. Mater. 2021, 33, 2006042.
- 4Y. F. Lin, H. Wan, D. Wu, G. Chen, N. Zhang, X. H. Liu, J. H. Li, Y. J. Cao, G. Z. Qiu, R. Z. Ma, J. Am. Chem. Soc. 2020, 142, 7317.
- 5Z. Q. Xue, K. Liu, Q. L. Liu, Y. L. Li, M. R. Li, C. Y. Su, N. Ogiwara, H. Kobayashi, H. Kitagawa, M. Liu, G. Q. Li, Nat. Commun. 2019, 10, 5048.
- 6C. F. Li, L. J. Xie, J. W. Zhao, L. F. Gu, H. B. Tang, L. R. Zheng, G. R. Li, Angew. Chem., Int. Ed. 2022, 61, e202116934.
- 7Y. Peng, C. R. Huang, J. L. Huang, M. Feng, X. Z. Qiu, X. Yue, S. M. Huang, Adv. Funct. Mater. 2022, 32, 2201011.
- 8D. D. Liu, M. F. Lu, D. P. Liu, S. C. Yan, W. Zhou, L. Y. Zhang, Z. G. Zou, Adv. Funct. Mater. 2022, 32, 2111234.
- 9M. J. Liu, K. A. Min, B. C. Han, L. Y. S. Lee, Adv. Energy Mater. 2021, 11, 2101281.
- 10M. Feng, J. L. Huang, Y. Peng, C. R. Huang, X. Yue, S. M. Huang, ACS Nano 2022, 16, 13834.
- 11H. Furukawa, K. E. Cordova, M. OQKeeffe, O. M. Yaghi, Science 2013, 341, 123044.
- 12L. Yu, J. F. Yang, B. Y. Guan, Y. Lu, X. W. Lou, Angew. Chem., Int. Ed. 2018, 57, 172.
- 13L. Z. Zhuang, L. Ge, H. L. Liu, Z. R. Jiang, Y. Jia, Z. H. Li, D. J. Yang, R. K. Hocking, M. R. Li, L. Z. Zhuang, X. Wang, X. D. Yao, Z. H. Zhu, Angew. Chem., Int. Ed. 2019, 58, 13565.
- 14J. J. Duan, S. Chen, C. Zhao, Nat. Commun. 2017, 8, 15341.
- 15K. Ge, S. J. Sun, Y. Zhao, K. Yang, S. Wang, Z. H. Zhang, J. Y. Cao, Y. F. Yang, Y. Zhang, M. W. Pan, L. Zhu, Angew. Chem., Int. Ed. 2021, 60, 12097.
- 16F. Z. Sun, G. Wang, Y. Q. Ding, C. Wang, B. B. Yuan, Y. Q. Lin, Adv. Energy Mater. 2018, 8, 1800584.
- 17M. Liu, L. J. Kong, X. M. Wang, J. He, X. H. Bu, Small 2019, 15, 1903410.
- 18F. L. Li, Q. Shao, X. Q. Huang, J. P. Lang, Angew. Chem., Int. Ed. 2018, 57, 1888.
- 19C. Liu, J. Wang, J. J. Wan, Y. Cheng, R. Huang, C. Q. Zhang, W. L. Hu, G. F. Wei, C. Z. Yu, Angew. Chem., Int. Ed. 2020, 59, 3630.
- 20F. L. Li, P. T. Wang, X. Q. Wang, D. J. Young, H. F. Wang, P. Braunstein, J. P. Lang, Angew. Chem., Int. Ed. 2019, 58, 7051.
- 21D. K. Xiong, M. L. Gu, C. Chen, C. X. Lu, F. Y. Yi, X. H. Ma, Chem. Eng. J. 2021, 404, 127111.
- 22W. R. Cheng, Z. P. Wu, D. Y. Luan, S. Q. Zang, X. W. Lou, Angew. Chem., Int. Ed. 2021, 60, 26397.
- 23X. H. Zhao, B. Pattengale, D. H. Fan, Z. H. Zou, Y. Q. Zhao, J. Du, J. Huang, C. L. Xu, ACS Energy Lett. 2018, 3, 2520.
- 24W. R. Cheng, X. Zhao, H. Su, F. M. Tang, W. Che, H. Zhang, Q. H. Liu, Nat. Energy 2019, 4, 115.
- 25S. L. Zhao, Y. Wang, J. C. Dong, C. T. He, H. J. Yin, P. F. An, K. Zhao, X. F. Zhang, C. Gao, L. J. Zhang, L. W. Lv, J. X. Wang, J. Q. Zhang, A. M. Khattak, N. A. Khan, Z. X. Wei, J. Zhang, S. Q. Liu, H. J. Zhao, Z. Y. Tang, Nat. Energy 2016, 1, 16184.
- 26W. J. Li, S. Xue, S. Watzele, S. J. Hou, J. Fichtner, A. L. Semrau, L. J. Zhou, A. Welle, A. S. Bandarenka, R. A. Fischer, Angew. Chem., Int. Ed. 2020, 59, 5837.
- 27J. Q. Shen, P. Q. Liao, D. D. Zhou, C. T. He, J. X. Wu, W. X. Zhang, J. P. Zhang, X. M. Chen, J. Am. Chem. Soc. 2017, 139, 1778.
- 28L. Huang, G. Gao, H. Zhang, J. X. Chen, Y. X. Fang, S. J. Dong, Nano Energy 2020, 68, 104296.
- 29J. Zhou, Y. B. Dou, A. Zhou, R. M. Guo, M. J. Zhao, J. R. Li, Adv. Energy Mater. 2017, 7, 1602643.
- 30L. Zhang, J. J. Wang, K. Jiang, Z. H. Xiao, Y. T. Gao, S. W. Lin, B. L. Chen, Angew. Chem., Int. Ed. 2022, 61, e202214794.
- 31Q. Z. Qian, Y. P. Li, Y. Liu, L. Yu, G. Q. Zhang, Adv. Mater. 2019, 31, 1901139.
- 32F. S. Farahani, M. S. Rahmanifar, A. Noori, M. F. El-Kady, N. Hassani, M. Neek-Amal, R. B. Kaner, M. F. Mousavi, J. Am. Chem. Soc. 2022, 144, 3411.
- 33X. Z. Qiao, X. M. Yin, L. Wen, X. Y. Chen, J. M. Li, H. C. Ye, X. B. Huang, W. D. Zhao, T. Wang, Chem 2022, 8, 3241.
- 34Z. H. Zou, T. T. Wang, X. H. Zhao, W. J. Jiang, H. R. Pan, D. Q. Gao, C. L. Xu, ACS Catal. 2019, 9, 7356.
- 35L. C. Bai, C. S. Hsu, D. T. L. Alexander, H. M. Chen, X. L. Hu, J. Am. Chem. Soc. 2019, 141, 14190.
- 36J. Zhang, T. Quast, W. H. He, S. Dieckhöfer, J. R. C. Junqueira, D. Öhl, P. Wilde, D. Jambrec, Y. T. Chen, W. Schuhmann, Adv. Mater. 2022, 34, 2109108.
- 37Y. S. Wei, L. M. Sun, M. Wang, J. H. Hong, L. L. Zou, H. W. Liu, Y. Wang, M. Zhang, Z. Liu, Y. W. Li, S. Horike, K. Suenaga, Q. Xu, Angew. Chem., Int. Ed. 2020, 59, 16013.
- 38K. Rui, G. Q. Zhao, Y. P. Chen, Y. Lin, Q. Zhou, J. Y. Chen, J. X. Zhu, W. P. Sun, W. Huang, S. X. Dou, Adv. Funct. Mater. 2018, 28, 1801554.
- 39K. He, T. T. Tsega, X. Liu, J. T. Zai, X. H. Li, X. J. Liu, W. H. Li, N. Ali, X. F. Qian, Angew. Chem., Int. Ed. 2019, 58, 11903.
- 40Z. Q. Xue, Y. L. Li, Y. W. Zhang, W. Geng, B. M. Jia, J. Tang, S. X. Bao, H. P. Wang, Y. N. Fan, Z. W. Wei, Z. S. Zhang, Z. F. Ke, G. Q. Li, C. Y. Su, Adv. Energy Mater. 2018, 8, 1801564.
- 41W. L. Li, F. S. Li, H. Yang, X. J. Wu, P. L. Zhang, Y. Shan, L. C. Sun, Nat. Commun. 2019, 10, 5074.
- 42D. R. Sun, L. W. Wong, H. Y. Wong, K. H. Lai, L. Ye, X. Y. Xv, T. H. Ly, Q. M. Deng, J. Zhao, Angew. Chem., Int. Ed. 2023, 62, e202216008.
- 43T. Tang, W. J. Jiang, S. Niu, N. Liu, H. Luo, Y. Y. Chen, S. F. Jin, F. Gao, L. J. Wan, J. S. Hu, J. Am. Chem. Soc. 2017, 139, 8320.
- 44M. F. Sanad, A. R. P. Santiago, S. A. Tolba, M. A. Ahsan, O. F. Delgado, M. S. Adly, E. M. Hahrous, M. M. Abodouh, M. S. El-Shall, S. T. Sreenivasan, N. K. Allam, L. Echegoyen, J. Am. Chem. Soc. 2021, 143, 4064.
- 45J. N. Hausmann, P. Menezes, Angew. Chem., Int. Ed. 2022, 61, e202207279.
- 46G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15.
- 47G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.
- 48J. P. Perdew, K. Burke, Y. Wang, Phys. Rev. Lett. 1996, 77, 3865.
- 49S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 50S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 51S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton, Phys. Rev. B 1998, 57, 1505.
- 52S. Carlotto, M. M. Natile, A. Glisenti, A. Vittadini, Chem. Phys. Lett. 2013, 588, 102.