Atomic Engineering Modulates Oxygen Reduction of Hollow Carbon Matrix Confined Single Metal-Nitrogen Sites for Zinc-Air Batteries
Haihua Wu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorXin Xu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorJiahao Wu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorJuanjuan Zhai
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorFeng Wu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorYudan Li
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorSen Jiang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorCorresponding Author
Jiangwei Zhang
Science Center of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haobo Li
School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005 Australia
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yunfang Gao
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHaihua Wu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorXin Xu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorJiahao Wu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorJuanjuan Zhai
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorFeng Wu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorYudan Li
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorSen Jiang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
Search for more papers by this authorCorresponding Author
Jiangwei Zhang
Science Center of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Haobo Li
School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005 Australia
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yunfang Gao
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The systematical understanding of metal-dependent activity in electrocatalyzing oxygen reduction reaction (ORR), a vital reaction with sluggish kinetics for zinc-air batteries, remains quite unclear. An atomic and spatial engineering modulating ORR activity over hollow carbon quasi-sphere (HCS) confined in a series of single M-N (M = Cu, Mn, Ni) sites is reported here. Based on the theoretical prediction and experimental validation, Cu-N4 site with the lowest overpotential shows a better ORR kinetics than Mn-N4 and Ni-N4. The ORR activity of single-atom Cu center can be further improved by decreasing the coordination number of N to two, namely Cu-N2, due to the enhancement of electrons with lower coordination structure. Benefitting from the unique spatial confinement effect of the HCS structure in modulating electronic feature of active sites, the Cu-N2 site confined in HCS also delivers highly improved ORR kinetics and activity relative to that on planner graphene. Additionally, the best catalyst holds excellent promise in the application of zinc-air batteries. The findings will pave a new way to atomically and electronically tune active sites with high efficiency for other single-atom catalysts.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202301327-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) Y. Q. Zhang, L. Tao, C. Xie, D. D. Wang, Y. Q. Zou, R. Chen, Y. Y. Wang, C. K. Jia, S. Y. Wang, Adv. Mater. 2020, 32, 1905923; b) Q. Liu, Z. Pan, E. Wang, L. An, G. Sun, Energy Storage Mater. 2020, 27, 478; c) D. A. Cullen, K. C. Neyerlin, R. K. Ahluwalia, R. Mukundan, K. L. More, R. L. Borup, A. Z. Weber, D. J. Myers, A. Kusoglu, Nat. Energy 2021, 6, 462.
- 2a) S. Liu, Z. Li, C. Wang, W. Tao, M. Huang, M. Zuo, Y. Yang, K. Yang, L. Zhang, S. Chen, P. Xu, Q. Chen, Nat. Commun. 2020, 11, 938; b) J. Fan, M. Chen, Z. Zhao, Z. Zhang, S. Ye, S. Xu, H. Wang, H. Li, Nat. Energy 2021, 6, 475; c) Z. Ma, Z. P. Cano, A. Yu, Z. Chen, G. Jiang, X. Fu, L. Yang, T. Wu, Z. Bai, J. Lu, Angew. Chem., Int. Ed. 2020, 59, 18334; Angew. Chem. 2020, 132, 18490; d) K. Zeng, X. Zheng, C. Li, J. Yan, J.-H. Tian, C. Jin, P. Strasser, R. Yang, Adv. Funct. Mater. 2020, 30, 2000503.
- 3a) Q. Ji, L. Bi, J. Zhang, H. Cao, X. S. Zhao, Energy Environ. Sci. 2020, 13, 1408; b) Z. Liang, H. Guo, G. Zhou, K. Guo, B. Wang, H. Lei, W. Zhang, H. Zheng, U.-P. Apfel, R. Cao, Angew. Chem., Int. Ed. 2021, 60, 8472 Angew. Chem. 2021, 133, 8553; c) M. Wang, W. Yang, X. Li, Y. Xu, L. Zheng, C. Su, B. Liu, ACS Energy Lett. 2021, 6, 379.
- 4a) L. Jiao, J. Li, L. L. Richard, Q. Sun, T. Stracensky, E. Liu, M. T. Sougrati, Z. Zhao, F. Yang, S. Zhong, H. Xu, S. Mukerjee, Y. Huang, D. A. Cullen, J. H. Park, M. Ferrandon, D. J. Myers, F. Jaouen, Q. Jia, Nat. Mater. 2021, 20, 1385; b) Q. Yang, Y. Jia, F. Wei, L. Zhuang, D. Yang, J. Liu, X. Wang, S. Lin, P. Yuan, X. Yao, Angew. Chem., Int. Ed. 2020, 59, 6122 Angew. Chem. 2020, 132, 6178; c) X. Wang, X. Sang, C.-L. Dong, S. Yao, L. Shuai, J. Lu, B. Yang, Z. Li, L. Lei, M. Qiu, L. Dai, Y. Hou, Angew. Chem., Int. Ed. 2021, 60, 11959 Angew. Chem. 2021, 133, 12066; d) Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng, C. Wang, Z. Zhang, W. Zheng, ACS Catal. 2019, 9, 336; e) L. Zhang, Q. Wang, R. Si, Z. Song, X. Lin, M. N. Banis, K. Adair, J. Li, K. Doyle-Davis, R. Li, L.-M. Liu, M. Gu, X. Sun, Small 2021, 17, 2004453.
- 5a) Z. Shi, W. Yang, Y. Gu, T. Liao, Z. Sun, Adv. Sci. 2020, 7, 2001069; b) B. Lu, Q. Liu, S. Chen, ACS Catal. 2020, 10, 7584.
- 6a) J. W. Chen, Z. Zhang, H. M. Yan, G. J. Xia, H. Cao, Y. G. Wang, Nat. Commun. 2022, 13, 1734; b) M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116, 3594; c) A. Kulkarni, S. Siahrostami, A. Patel, J. K. Nørskov, Chem. Rev. 2018, 118, 2302.
- 7a) Z. Liang, N. Kong, C. Yang, W. Zhang, H. Zheng, H. Lin, R. Cao, Angew. Chem., Int. Ed. 2021, 60, 12759 Angew. Chem. 2021, 133, 12869; b) D. Li, X. Li, S. Chen, H. Yang, C. Wang, C. Wu, Y. A. Haleem, S. Duan, J. Lu, B. Ge, P. M. Ajayan, Y. Luo, J. Jiang, L. Song, Nat. Energy 2019, 4, 512.
- 8a) Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong, W. C. Cheong, R. Shen, X. Wen, L. Zheng, A. I. Rykov, S. Cai, H. Tang, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2018, 9, 5422; b) K. Liu, J. Fu, Y. Lin, T. Luo, G. Ni, H. Li, Z. Lin, M. Liu, Nat. Commun. 2022, 13, 2075; c) Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee, J. W. Han, J. Lee, J. Am. Chem. Soc. 2019, 141, 6254; d) F. Pan, B. Li, E. Sarnello, Y. Fei, X. Feng, Y. Gang, X. Xiang, L. Fang, T. Li, Y. H. Hu, G. Wang, Y. Li, ACS Catal. 2020, 10, 10803.
- 9G. Han, X. Zhang, W. Liu, Q. Zhang, Z. Wang, J. Cheng, T. Yao, L. Gu, C. Du, Y. Gao, G. Yin, Nat. Commun. 2021, 12, 6335.
- 10J. Yang, Z. Wang, C.-X. Huang, Y. Zhang, Q. Zhang, C. Chen, J. Du, X. Zhou, Y. Zhang, H. Zhou, L. Wang, X. Zheng, L. Gu, L. Yang, Y. Wu, Angew. Chem., Int. Ed. 2021, 60, 22722 Angew. Chem. 2021, 133, 22904.
- 11X. F. Lu, B. Y. Xia, S.-Q. Zang, X. W. Lou, Angew. Chem., Int. Ed. 2020, 59, 4634 Angew. Chem. 2020, 132, 4662.
- 12a) T. S. Wang, L. J. Gao, J. W. Hou, S. J. A. Herou, J. T. Griffiths, W. W. Li, J. H. Dong, S. Gao, M. M. Titirici, R. V. Kumar, A. K. Cheetham, X. H. Bao, Q. Fu, S. K. Smoukov, Nat. Commun. 2019, 10, 1340; b) X. G. Guo, G. Z. Fang, G. Li, H. Ma, H. J. Fan, L. Yu, C. Ma, X. Wu, D. H. Deng, M. M. Wei, D. L. Tan, R. Si, S. Zhang, J. Q. Li, L. T. Sun, Z. C. Tang, X. L. Pan, X. H. Bao, Science 2014, 344, 616; c) L. Tang, X. G. Meng, D. H. Deng, X. H. Bao, Adv. Mater. 2019, 31, 1901996.
- 13P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem., Int. Ed. 2016, 55, 10800 Angew. Chem. 2016, 128, 10958.
- 14a) W. Zhu, Z. Chen, Y. Pan, R. Dai, Y. Wu, Z. Zhuang, D. Wang, Q. Peng, C. Chen, Y. Li, Adv. Mater. 2019, 31, 1800426; b) P. He, X.-Y. Yu, X. W. Lou, Angew. Chem., Int. Ed. 2017, 56, 3897 Angew. Chem. 2017, 129, 3955.
- 15Z. Liang, N. Kong, C. Yang, W. Zhang, H. Zheng, H. Lin, R. Cao, Angew. Chem., Int. Ed. 2021, 60, 12759.
- 16H. Wu, J. Wu, Y. Li, W. Li, J. Zhai, Q. Jiang, X. Xu, Y. Gao, Chem. Eng. J. 2022, 431, 134084.
- 17H. Wu, H. Li, X. Zhao, Q. Liu, J. Wang, J. Xiao, S. Xie, R. Si, F. Yang, S. Miao, X. Guo, G. Wang, X. Bao, Energy Environ. Sci. 2016, 9, 3736.
- 18J. Cao, Y. Hu, Y. Zhu, H. Cao, M. Fan, C. Huang, K. Shu, M. He, H. C. Chen, Chem. Eng. J. 2021, 405, 126928.
- 19a) P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, J. Phys.: Condens. Matter 2009, 21, 395502; b) P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, et al., J. Phys.: Condens. Matter 2017, 29, 465901.
- 20J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard, K. W. Jacobsen, Phys. Rev. B 2012, 85, 235149.
- 21X. Chen, F. Ge, J. Chang, N. Lai, Int. J. Energy Res. 2019, 43, 7375.