The Precision Defect Engineering with Nonmetallic Element Refilling Strategy in g-C3N4 for Enhanced Photocatalytic Hydrogen Production
Yujie Liu
Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorMuhammad Tayyab
Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorWenkai Pei
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092 P. R. China
Search for more papers by this authorCorresponding Author
Liang Zhou
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJuying Lei
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092 P. R. China
Search for more papers by this authorLingzhi Wang
Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorYongdi Liu
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092 P. R. China
Search for more papers by this authorCorresponding Author
Jinlong Zhang
Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYujie Liu
Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorMuhammad Tayyab
Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorWenkai Pei
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092 P. R. China
Search for more papers by this authorCorresponding Author
Liang Zhou
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJuying Lei
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092 P. R. China
Search for more papers by this authorLingzhi Wang
Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Search for more papers by this authorYongdi Liu
National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092 P. R. China
Search for more papers by this authorCorresponding Author
Jinlong Zhang
Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Traditional defect engineering and doping strategies are considered effective means for improving H2 evolution, but the uncontrollability of the modification process does not always lead to efficient activity. A defect-induced heteroatom refilling strategy is used here to synthesize heteroatoms introduced carbon nitride by precisely controlling the “introduction” sites on efficient N1 sites. Density functional theory calculations show that the refilling of B, P, and S sites have stronger H2O adsorption and dissociation capacity than traditional doping, which makes it an optimal H2 production path. The large internal electric field strength of heteroatom-refilled catalysts leads to fast electron transfer and the hydrogen production of the best sample is up to 20.9 mmol g−1 h−1. This work provides a reliable and clear insight into controlled defect engineering of photocatalysts and a universal modification strategy for typical heteroatom and co-catalyst systems for H2 production.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202208117-sup-0001-SuppMat.pdf4.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) L. Dai, F. Yao, L. Yu, C. Fang, J. Li, L. Xue, S. Zhang, P. Xiong, Y. Fu, J. Sun, J. Zhu, Adv. Energy Mater. 2022, 12, 2200974; b) X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76.
- 2a) W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang, C. Sun, H. Zhao, Angew. Chem. Int. Ed. 2019, 58, 16644; b) D. Zhao, Y. Wang, C.-L. Dong, Y.-C. Huang, J. Chen, F. Xue, S. Shen, L. Guo, Nat. Energy 2021, 6, 388.
- 3a) L. Wu, F. Su, T. Liu, G.-Q. Liu, Y. Li, T. Ma, Y. Wang, C. Zhang, Y. Yang, S.-H. Yu, J. Am. Chem. Soc. 2022, 144, 20620;
b) L. Liu, M. Li, F. Chen, H. Huang, Small Struct. 2022, 2200188;
10.1002/sstr.202200188 Google Scholarc) T. Chen, L. Z. Liu, C. Hu, H. W. Huang, Chin. J. Catal. 2021, 42, 1413; d) C. Hu, J. C. Hu, Z. J. Zhu, Y. Lu, S. Q. Chu, T. Y. Ma, Y. H. Zhang, H. W. Huang, Angew. Chem., Int. Ed. 2022, 61, e202212397.
- 4a) M. Hojamberdiev, R. Vargas, Z. C. Kadirova, K. Kato, H. Sena, A. G. Krasnov, A. Yamakata, K. Teshima, M. Lerch, ACS Catal. 2022, 12, 1403; b) B. Yang, X. Li, Q. Zhang, X. Yang, J. Wan, G. Liao, J. Zhao, R. Wang, J. Liu, R. D. Rodriguez, X. Jia, Appl. Catal., B 2022, 314, 121521; c) X. Liu, F. Liu, J. Yu, G. Xiong, L. Zhao, Y. Sang, S. Zuo, J. Zhang, H. Liu, W. Zhou, Adv. Sci. 2020, 7, 2001526; d) J. Li, D. Wu, J. Iocozzia, H. Du, X. Liu, Y. Yuan, W. Zhou, Z. Li, Z. Xue, Z. Lin, Angew. Chem. Int. Ed. 2019, 58, 1985.
- 5D. Xu, Q. Cheng, P. Saha, Y. Hu, L. Chen, H. Jiang, C. Li, Adv. Funct. Mater. 2022, 33, 2211661.
- 6A. Kumar, P. Raizada, A. Hosseini-Bandegharaei, V. K. Thakur, V.-H. Nguyen, P. Singh, J. Mater. Chem. A 2021, 9, 111.
- 7a) H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Mater. 2017, 29, 1605148; b) P. Niu, M. Qiao, Y. Li, L. Huang, T. Zhai, Nano Energy 2018, 44, 73.
- 8L. Lin, H. Ou, Y. Zhang, X. Wang, ACS Catal. 2016, 6, 3921.
- 9L. Zhou, J. Feng, B. Qiu, Y. Zhou, J. Lei, M. Xing, L. Wang, Y. Zhou, Y. Liu, J. Zhang, Appl. Catal., B 2020, 267, 118396.
- 10H. Cheng, J. C. Hu, Z. J. Zhu, Y. Lu, S. Q. Chu, T. Y. Ma, Y. H. Zhang, H. W. Huang, Angew. Chem. Int. Ed. 2022, 21, e202212397.
- 11X. F. Mei, X. Q. Meng, F. M. Wu, Phys. E 2015, 68, 81.
- 12C. Huang, Y. Wen, J. Ma, D. Dong, Y. Shen, S. Liu, H. Ma, Y. Zhang, Nat. Commun. 2021, 12, 320.
- 13a) P. Niu, L. C. Yin, Y. Q. Yang, G. Liu, H. M. Cheng, Adv. Mater. 2014, 26, 8046; b) X. Zhang, P. Ma, C. Wang, L. Gan, X. Chen, P. Zhang, Y. Wang, H. Li, L. Wang, X. Zhou, K. Zheng, Energy Environ. Sci. 2022, 15, 830.
- 14Y. Hu, Y. Shim, J. Oh, S. Park, S. Park, Y. Ishii, Chem. Mater. 2017, 29, 5080.
- 15M. H. Liu, C. G. Wei, H. Y. Zhuzhang, J. M. Zhou, Z. M. Pan, W. Lin, G. Z. Y. Yu, G. G. Zhang, X. C. Wang, Angew. Chem., Int. Ed. 2021, 61, e202113389.
- 16Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat. Commun. 2014, 5, 3783.
- 17Z. P. Wang, Z. L. Wang, X. D. Zhu, C. Z. Ai, Y. M. Zeng, W. Y. Shi, X. D. Zhang, H. R. Zhang, H. W. Si, J. Li, C. Z. Wang, S. W. Lin, Small 2021, 17, 2102699.
- 18C. Feng, L. Tang, Y. Deng, J. Wang, J. Luo, Y. Liu, X. Ouyang, H. Yang, J. Yu, J. Wang, Adv. Funct. Mater. 2020, 30, 2001922.
- 19X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma, G. Zheng, Joule 2018, 2, 1610.
- 20S. Ajmal, A. Rasheed, N. Q. Tran, X. Shao, Y. Hwang, V. Q. Bui, Y. D. Kim, J. Kim, H. Lee, Appl. Catal., B 2023, 321, 122070.
- 21a) T. Y. Ma, J. Ran, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 2015, 54, 4646; b) C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Adv. Mater. 2013, 25, 4932; c) Y. Li, Y. Yuan, Y. Bai, Y. Liu, Z. Wang, L. Li, F. Wu, K. Amine, C. Wu, J. Lu, Adv. Energy Mater. 2018, 8, 1702781.
- 22a) K. Wang, C. W. Lu, Q. Ren, W. K. Zhang, H. Huang, J. Zhang, Y. P. Gan, X. P. He, X. H. Xia, R. Y. Fang, Y. Xia, J. Electroanal. Chem. 2023, 928, 117017; b) Z. W. Lu, X. C. Xu, Y. J. Chen, X. H. Wang, L. Sun, K. L. Zhuo, Green Energy Environ. 2020, 5, 69.
- 23a) J. Liu, J. Zhang, D. Wang, D. Li, J. Ke, S. Wang, S. Liu, H. Xiao, R. Wang, ACS Sustain. Chem. Eng. 2019, 7, 12428; b) J. Jiang, X. Wang, C. Zhang, T. Li, Y. Lin, T. Xie, S. Dong, Chem. Eng. J. 2020, 397, 125356.
- 24a) M. Xing, B. Qiu, M. Du, Q. Zhu, L. Wang, J. Zhang, Adv. Funct. Mater. 2017, 27, 1702624; b) K. Maeda, D. Lu, K. Domen, ACS Catal. 2013, 3, 1026; c) X. Zhou, Y. Liu, Z. Jin, M. Huang, F. Zhou, J. Song, J. Qu, Y. J. Zeng, P. C. Qian, W. Y. Wong, Adv. Sci. 2021, 8, 2002465; d) Y. Liu, Q. Zhu, M. Tayyab, L. Zhou, J. Lei, J. Zhang, Sol. RRL 2021, 5, 2100536; e) W. Iqbal, B. Qiu, Q. Zhu, M. Xing, J. Zhang, Appl. Catal., B 2018, 232, 306; f) Y. Wu, Q. Wu, Q. Zhang, Z. Lou, K. Liu, Y. Ma, Z. Wang, Z. Zheng, H. Cheng, Y. Liu, Y. Dai, B. Huang, P. Wang, Energy Environ. Sci. 2022, 15, 1271; g) A. A. Melvin, K. Illath, T. Das, T. Raja, S. Bhattacharyya, C. S. Gopinath, Nanoscale 2015, 7, 13477; h) G. Chen, P. Wang, Y. Wu, Q. Zhang, Q. Wu, Z. Wang, Z. Zheng, Y. Liu, Y. Dai, B. Huang, Adv. Mater. 2020, 32, 2001344; i) W. Li, X.-s. Chu, F. Wang, Y.-y. Dang, X.-y. Liu, X.-c. Wang, C.-y. Wang, Appl. Catal., B 2021, 288, 120034; j) X. Li, J. Hu, T. Yang, X. Yang, J. Qu, C. M. Li, Nano Energy 2022, 92, 106714; k) L. Chen, Y. Xu, Z. Yang, K. Zhang, B. Chen, Appl. Catal., B 2020, 277, 119207; l) Y. Liu, B. Wang, Q. Zhang, S. Yang, Y. Li, J. Zuo, H. Wang, F. Peng, Green Chem. 2020, 22, 238; m) K. Chu, Q.-q. Li, Y.-p. Liu, J. Wang, Y.-h. Cheng, Appl. Catal., B 2020, 267, 118693.
- 25T. Han, X. Cao, K. Sun, Q. Peng, C. Ye, A. Huang, W. C. Cheong, Z. Chen, R. Lin, D. Zhao, X. Tan, Z. Zhuang, C. Chen, D. Wang, Y. Li, Nat. Commun. 2021, 12, 4952.
- 26K. K. Takashi, M. Masayuki, T. Hideyuki, H. Yoshihiro, N. Taneo, Proc. SPIE 1990, 56, 1286.