Synthesizing Cr-Based Two-Dimensional Conjugated Metal-Organic Framework Through On-Surface Substitution Reaction
Weiliang Zhong
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorTingfeng Zhang
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorDan Chen
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorNuoyu Su
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorGuangyao Miao
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorJiandong Guo
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190 P. R. China
Songshan Lake Material Laboratory, Dongguan, Guangdong, 523808 P. R. China
Search for more papers by this authorCorresponding Author
Long Chen
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhengfei Wang
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Weihua Wang
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Songshan Lake Material Laboratory, Dongguan, Guangdong, 523808 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorWeiliang Zhong
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorTingfeng Zhang
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
Search for more papers by this authorDan Chen
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorNuoyu Su
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorGuangyao Miao
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorJiandong Guo
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190 P. R. China
Songshan Lake Material Laboratory, Dongguan, Guangdong, 523808 P. R. China
Search for more papers by this authorCorresponding Author
Long Chen
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhengfei Wang
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Weihua Wang
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Songshan Lake Material Laboratory, Dongguan, Guangdong, 523808 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
A single-layer Cr3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) conjugated metal-organic framework (c-MOF) is synthesized under ultrahigh vacuum conditions by substituting Cr for Ni in Ni3(HITP)2 template. As revealed by low-temperature scanning tunneling microscopy and scanning tunneling spectroscopy, while codeposition of Cr atoms and 2,3,6,7,10,11-hexaaminotriphenylene precursors produces irregular branches, crystalline Cr3(HITP)2 frameworks are obtained by depositing Cr atoms to the Ni3(HITP)2 templates. The density functional theory calculations reveal that the binding energy between Cr and HITP ligands is much higher than that for Ni, which hampers the growth of crystalline Cr3(HITP)2 frameworks through direct coordination assembly but makes the substitution reaction energetically favorable. This work demonstrates a new strategy to prepare high-quality early-transition-metal-based c-MOFs under ultrahigh vacuum conditions.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202207877-sup-0001-SuppMat.pdf477.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) M. Ko, L. Mendecki, K. A. Mirica, Chem. Commun. 2018, 54, 7873; b) W. Zheng, C.-S. Tsang, L. Y. S. Lee, K.-Y. Wong, Mater. Today Chem. 2019, 12, 34; c) W. Li, W. Deng, G. E. Wang, G. Xu, Energy Chem. 2020, 2, 100029; d) J. Liu, M. Abel, N. Lin, J. Phys. Chem. Lett. 2022, 13, 1356; e) H. Zhong, M. Wang, G. Chen, R. Dong, X. Feng, ACS Nano 2022, 16, 1759; f) Z. Meng, K. A. Mirica, Nano Res. 2020, 14, 369; g) M. Hmadeh, Z. Lu, Z. Liu, F. Gándara, H. Furukawa, S. Wan, V. Augustyn, R. Chang, L. Liao, F. Zhou, E. Perre, V. Ozolins, K. Suenaga, X. Duan, B. Dunn, Y. Yamamto, O. Terasaki, O. M. Yaghi, Chem. Mater. 2012, 24, 3511.
- 2L. S. Xie, G. Skorupskii, M. Dinca, Chem. Rev. 2020, 120, 8536.
- 3a) L. Guo, J. Sun, W. Zhang, L. Hou, L. Liang, Y. Liu, C. Yuan, ChemSusChem. 2019, 12, 5051; b) S. Gu, Z. Bai, S. Majumder, B. Huang, G. Chen, J. Power Sources 2019, 429, 22.
- 4E. P. Beaumier, A. J. Pearce, X. Y. See, I. A. Tonks, Nat. Rev. Chem. 2019, 3, 15.
- 5a) M. G. Campbell, S. F. Liu, T. M. Swager, M. Dinca, J. Am. Chem. Soc. 2015, 137, 13780; b) M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, M. Dinca, Angew. Chem., Int. Ed. 2015, 54, 4349.
- 6a) D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn, M. Dinca, Nat. Mater. 2017, 16, 220; b) D. Feng, T. Lei, M. R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A. A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J. B. Tok, X. Zou, Y. Cui, Z. Bao, Nat. Energy 2018, 3, 30.
- 7R. Dong, Z. Zhang, D. C. Tranca, S. Zhou, M. Wang, P. Adler, Z. Liao, F. Liu, Y. Sun, W. Shi, Z. Zhang, E. Zschech, S. C. B. Mannsfeld, C. Felser, X. Feng, Nat. Commun. 2018, 9, 2637.
- 8a) T. Takenaka, K. Ishihara, M. Roppongi, Y. Miao, Y. Mizukami, T. Makita, J. Tsurumi, S. Watanabe, J. Takeya, M. Yamashita, K. Torizuka, Y. Uwatoko, T. Sasaki, X. Huang, W. Xu, D. Zhu, N. Su, J. Cheng, T. Shibauchi, K. Hashimoto, Sci. Adv. 2021, 7, 3996; b) X. Huang, S. Zhang, L. Liu, L. Yu, G. Chen, W. Xu, D. Zhu, Angew. Chem., Int. Ed. 2018, 57, 146.
- 9a) W. Jiang, Z. Liu, J. W. Mei, B. Cui, F. Liu, Nanoscale 2019, 11, 955; b) W. Jiang, X. Ni, F. Liu, Acc. Chem. Res. 2021, 54, 416; c) M. G. Yamada, T. Soejima, N. Tsuji, D. Hirai, M. Dincă, H. Aoki, Phys. Rev. B 2016, 94, 081102; d) M. Zhao, A. Wang, X. Zhang, Nanoscale 2013, 5, 10404; e) N. Su, W. Jiang, Z. Wang, F. Liu, Appl. Phys. Lett. 2018, 112, 033301; f) L. Dong, Y. Kim, D. Er, A. M. Rappe, V. B. Shenoy, Phys. Rev. Lett. 2016, 116, 096601.
- 10R. Dong, M. Pfeffermann, H. Liang, Z. Zheng, X. Zhu, J. Zhang, X. Feng, Angew. Chem., Int. Ed. 2015, 54, 12058.
- 11a) L. Dong, Z. A. Gao, N. Lin, Prog. Surf. Sci. 2016, 91, 101; b) J. Liu, N. Lin, ChemPlusChem 2022, doi.org/10.1002/cplu.202200359.
- 12a) V. M. Santhini, C. Wackerlin, A. Cahlik, M. Ondracek, S. Pascal, A. Matej, O. Stetsovych, P. Mutombo, P. Lazar, O. Siri, P. Jelinek, Angew. Chem., Int. Ed. 2021, 60, 439; b) Z. Gao, Y. Gao, M. Hua, J. Liu, L. Huang, N. Lin, J. Phys. Chem. C 2020, 124, 27017; c) M. Hua, B. Xia, M. Wang, E. Li, J. Liu, T. Wu, Y. Wang, R. Li, H. Ding, J. Hu, Y. Wang, J. Zhu, H. Xu, W. Zhao, N. Lin, J. Phys. Chem. Lett. 2021, 12, 3733; d) Z. Gao, C. H. Hsu, J. Liu, F. C. Chuang, R. Zhang, B. Xia, H. Xu, L. Huang, Q. Jin, P. N. Liu, N. Lin, Nanoscale 2019, 11, 878.
- 13a) X. Chen, F. Sun, F. Bai, Z. Xie, Appl. Surf. Sci. 2019, 471, 256; b) S. Kang, J. Yu, Phys. Chem. Chem. Phys. 2022, 24, 22168.
- 14L. Chen, J. Kim, T. Ishizuka, Y. Honsho, A. Saeki, S. Seki, H. Ihee, D. Jiang, J. Am. Chem. Soc. 2009, 131, 7287.
- 15C. Wackerlin, A. Cahlik, J. Goikoetxea, O. Stetsovych, D. Medvedeva, J. Redondo, M. Svec, B. Delley, M. Ondracek, A. Pinar, M. Blanco-Rey, J. Kolorenc, A. Arnau, P. Jelinek, ACS Nano 2022, 16, 16402.
- 16M. Lischka, R. Dong, M. Wang, N. Martsinovich, M. Fritton, L. Grossmann, W. M. Heckl, X. Feng, M. Lackinger, Chem. - Eur. J. 2019, 25, 1975.
- 17G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 18S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 19J. Tersoff, D. R. Hamann, Phys. Rev. B 1985, 31, 805.