Bi-Functional Co/Al Modified 1T-MoS2/rGO Catalyst for Enhanced Uranium Extraction and Hydrogen Evolution Reaction in Seawater
Jiahuang Jian
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
Search for more papers by this authorCorresponding Author
Hongjun Kang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDongmei Yu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
Search for more papers by this authorXianshu Qiao
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
Search for more papers by this authorYang Liu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
Search for more papers by this authorYang Li
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
Search for more papers by this authorCorresponding Author
Wei Qin
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaohong Wu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJiahuang Jian
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
Search for more papers by this authorCorresponding Author
Hongjun Kang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDongmei Yu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
Search for more papers by this authorXianshu Qiao
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
Search for more papers by this authorYang Liu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
Search for more papers by this authorYang Li
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
Search for more papers by this authorCorresponding Author
Wei Qin
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiaohong Wu
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Uranium is a key element in the preparation of nuclear fuel. An electrochemical uranium extraction technique is proposed to achieve high efficiency uranium extraction performance through HER catalyst. However, it is still a challenge to design and develop a high-performance hydrogen evolution reaction (HER) catalyst for rapid extraction and recovery of uranium from seawater. Herein, a bi-functional Co, Al modified 1T-MoS2/reduced graphene oxide (CA-1T-MoS2/rGO) catalyst, showing a good HER performance with a HER overpotential of 466 mV at 10 mA cm−2 in simulated seawater, is first developed. Benefiting from the high HER performance of CA-1T-MoS2/rGO, efficient uranium extraction is achieved with a uranium extraction capacity of 1990 mg g−1 in simulated seawater without post-treatment, exhibiting a good reusability. The results of experiments and density functional theory (DFT) show that a high uranium extraction and recovery capability is attributed to the synergy effect of the improved HER performance and the strong adsorption capacity between U and OH*. This work provides a new strategy for the design and preparation of bi-functional catalysts with high HER performance and uranium extraction and recovery capabilities in seawater.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202207378-sup-0001-SuppMat.pdf864.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Tsouris, Nat. Energy 2017, 2, 17022.
- 2C. W. Abney, R. T. Mayes, T. Saito, S. Dai, Chem. Rev. 2017, 23, 13935.
- 3A. I. Wiechert, S. Yiacoumi, C. Tsouris, Nat. Sustain. 2022, 5, 13.
- 4M. Keener, C. Hunt, T. G. Carroll, V. Kampel, R. Dobrovetsky, T. W. Hayton, G. Menard, Nature 2020, 577, 652.
- 5Z. Wang, R. Ma, Q. Meng, Y. Yang, X. Ma, X. Ruan, Y. Yuan, G. Zhu, J. Am. Chem. Soc. 2021, 36, 14523.
- 6W. Sun, L. Feng, J. Zhang, K. Lin, H. Wang, B. Yan, T. Feng, M. Cao, T. Liu, Y. Yuan, N. Wang, Adv. Sci. 2022, 9, 2105008.
- 7Y. Wang, Z. Lin, Q. Liu, J. Zhu, J. Liu, J. Yu, R. Chen, P. Liu, J. Wang, Chem. Eng. J. 2021, 425, 131538.
- 8W. Cui, C. Zhang, R. Liang, J. Qiu, J. Mater. Chem. A 2021, 9, 25611.
- 9T. Liu, R. Zhang, M. Chen, Y. Liu, Z. Xie, S. Tang, Y. Yuan, N. Wang, Adv. Funct. Mater. 2022, 32, 2111049.
- 10T. Ou, Y. Wu, W. Han, L. Kong, G. Song, D. Chen, M. Su, J. Hazard. Mater. 2022, 424, 127208.
- 11B. Yan, C. Ma, J. Gao, Y. Yuan, N. Wang, Adv. Mater. 2020, 32, 1906615.
- 12Y. Xu, Q. Liu, J. Zhu, H. Zhang, J. Liu, R. Chen, J. Yu, Y. Li, J. Wang, Chem. Eng. J. 2022, 435, 134958.
- 13C. Liu, P. Hsu, J. Xie, J. Zhao, T. Wu, H. Wang, W. Liu, J. Zhang, S. Chu, Y. Cui, Nat. Energy 2017, 2, 17007.
- 14Z. Wang, Q. Meng, R. Ma, Z. Wang, Y. Yang, H. Sha, X. Ma, X. Ruan, X. Zou, Y. Yuan, G. Zhu, Chem 2020, 6, 1683.
- 15F. Ma, Y. Gui, P. Liu, Y. Xue, W. Song, Chem. Eng. J. 2020, 390, 124597.
- 16T. Liu, Z. Li, X. Zhang, H. Tan, Z. Chen, J. Wu, J. Chen, H. Qiu, Anal. Chem. 2021, 48, 16175.
- 17P. Liang, L. Yuan, H. Deng, X. Wang, L. Wang, Z. Li, S. Luo, W. Shi, Appl. Catal. B 2020, 267, 118688.
- 18P. Li, J. Wang, Y. Wang, L. Dong, W. Wang, R. Geng, Z. Ding, D. Luo, D. Pan, J. Liang, Q. Fan, Chem. Eng. J. 2021, 425, 131552.
- 19H. Zhang, W. Liu, A. Li, D. Zhang, X. Li, F. Zhai, L. Chen, L. Chen, Y. Wang, S. Wang, Angew. Chem., Int. Ed. 2019, 58, 16110.
- 20Y. Ye, B. Fan, Z. Qin, X. Tang, Y. Feng, M. Lv, S. Miao, H. Li, Y. Chen, F. Chen, Y. Wang, J. Hazard. Mater. 2022, 32, 128723.
- 21T. Liu, J. Yuan, B. Zhang, W. Liu, L. Lin, Y. Meng, S. Yin, C. Liu, F. Luan, Environ. Sci. Technol. 2019, 53, 14612.
- 22L, H.u, X. Yan, X. Zhang, D. Shan, Appl. Surf. Sci. 2018, 428, 819.
- 23J. Huang, Z. Liu, D. Huang, T. Jin, Y. Qian, J. Hazard. Mater. 2022, 433, 128775.
- 24C. Wang, A. S. Helal, Z. Wang, J. Zhou, X. Yao, Z. Shi, Y. Ren, J. Lee, J. Chang, B. Fugetsu, J. Li, Adv. Mater. 2021, 33, 2102633.
- 25X. Wang, Y. Zhang, H. Si, Q. Zhang, J. Wu, L. Gao, X. Wei, Y. Sun, Q. Liao, Z. Zhang, K. Ammarah, L. Gu, Z. Kang, Y. Zhang, J. Am. Chem. Soc. 2020, 142, 4298.
- 26B. Liu, Y. Cheng, B. Cao, M. Hu, P. Jing, R. Gao, Y. Du, J. Zhang, J. Liu, Appl. Catal., B 2021, 298, 120630.
- 27Z. Xie, S. Yu, X. Ma, K. Li, L. Ding, W. Wang, D. A. Cullen, H. M. Meyer, H. Yu, J. Tong, Z. Wu, F. Zhang, Appl. Catal., B 2022, 313, 121458.
- 28D. Wang, Z. Li, J. Zhou, H. Fang, X. He, P. Jena, J. Zeng, W. Wang, Nano-Micro Lett. 2018, 10, 62.
- 29Y. Wang, F. Lu, K. Su, N. Zhang, Y. Zhang, M. Wang, X. Wang, Chem. Eng. J. 2020, 399, 126018.
- 30R. Ge, W. Li, J. Huo, T. Liao, N. Cheng, Y. Du, M. Zhu, Y. Li, J. Zhang, Appl. Catal., B 2019, 246, 129.
- 31Y. Tang, Y. Wang, X. Wang, S. Li, W. Huang, L. Dong, C. Liu, Y. Li, Y. Lan, Adv. Energy Mater. 2016, 6, 1600116.
- 32G. M. Bremmera, L. V. Haandelb, E. J. M. Hensenb, J. W. M. Frenkenc, P. J. Kooyman, Appl. Catal., B 2019, 243, 145.
- 33D. C. Nguyen, T. L. L. Doan, S. Prabhakaran, D. T. Tran, D. H. Kim, J. H. Lee, N. H. Kim, Nano Energy 2021, 82, 105750.
- 34X. Lv, W. Wei, H. Wang, B. Huang, Y. Dai, Appl. Catal., B 2020, 264, 118521.
- 35Z. Song, G. Wang, Y. Chen, Q. Chang, Y. Lu, Z. Wen, Chem. Eng. J. 2022, 435, 134633.
- 36S. Lee, R. B. Moore, R. L. Mahajan, Carbon 2021, 171, 585.
- 37H. Lin, K. Le, P. Chen, J. Wu, Appl. Catal., B 2022, 317, 121717.
- 38K. Qi, X. Cui, L. Gu, S. Yu, X. Fan, M. Luo, S. Xu, N. Li, L. Zheng, Q. Zhang, J. Ma, Y. Gong, F. Lv, K. Wang, H. Huang, W. Zhang, S. Guo, W. Zheng, P. Liu, Nat. Commun. 2019, 10, 5231.
- 39Y. Wang, K. Qi, S. Yu, G. Jia, Z. Cheng, L. Zheng, Q. Wu, Q. Bao, Q. Wang, J. Zhao, X. Cui, W. Zheng, Nano-Micro Lett. 2019, 11, 102.
- 40Z. Li, H. Li, Z. Yang, X. Lu, S. Ji, M. Zhang, J. H. Horton, H. Ding, Q. Xu, J. Zhu, J. Yu, Small 2022, 18, 2201092.
- 41Y. Li, S. Zuo, Q. Li, H. Huang, X. Wu, J. Zhang, H. Zhang, J. Zhang, Appl. Catal., B 2022, 318, 121832.
- 42H. Zhang, L. Deng, J. Chen, Y. Zhang, M. Liu, Y. Han, Y. Chen, H. Zeng, Z. Shi, Chem. Eng. J. 2022, 446, 137364.
- 43H. Zhang, Z. Wei, J. Wu, F. Cheng, Y. Ma, W. Liu, Y. Cheng, Y. Lin, N. Liu, Y. Gao, Y. Yue, Energy Storage Mater. 2022, 50, 444.
- 44R. Jakhar, J. E. Yap, R. Joshi, Carbon 2020, 170, 277.
- 45N. H. Attanayake, A. C. Thenuwara, A. Patra, Y. V. Aulin, T. M. Tran, H. Chakraborty, E. Borguet, M. L. Klein, J. P. Perdew, D. R. Strongin, ACS Energy Lett. 2018, 3, 7.
- 46Z. Liu, L. Zhao, Y. Liu, Z. Gao, S. Yuan, X. Li, N. Li, S. Miao, Appl. Catal., B 2019, 246, 296.
- 47C. Zhao, Q. Wang, H. Zhang, S. Passerini, X. Qian, ACS Appl. Mater. Interfaces 2016, 24, 15661.
- 48K. Zhang, B. Jin, Y. Gao, S. Zhang, H. Shin, H. Zeng, J. H. Park, Small 2019, 15, 1804903.
- 49J. Jian, H. Kang, X. Qiao, K. Cui, Y. Liu, Y. Li, W. Qin, X. Wu, ACS Sustainable Chem. Eng. 2022, 10, 10203.
- 50X. Tang, Y. Liu, M. Liu, H. Chen, P. Huang, H. Ruan, Y. Zheng, F. Yang, R. He, W. Zhu, Nanoscale 2022, 14, 6285.
- 51Y. Liao, M. Wang, D. Chen, Appl. Surf. Sci. 2019, 484, 83.
- 52K. Li, T. Xiong, J. Liao, Y. Lei, Y. Zhang, W. Zhu, Chem. Eng. J. 2022, 433, 134449.
- 53S. Feng, L. Feng, M. Wang, Y. Yuan, Q. Yu, T. Feng, M. Cao, N. Wang, Q. Peng, Chem. Eng. J. 2022, 430, 133038.
- 54C. Niu, C. Zhang, W. Cui, S. Yi, R. Liang, J. Qiu, J. Hazard. Mater. 2022, 425, 127951.