Pseudo-Elasticity and Variable Electro-Conductivity Mediated by Size-Dependent Deformation Twinning in Molybdenum Nanocrystals
Huayu Peng
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorYuxuan Hou
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorWeiwei Meng
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorCorresponding Author
He Zheng
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123 China
Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLigong Zhao
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorYing Zhang
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorKaixuan Li
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorPeili Zhao
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorTing Liu
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorShuangfeng Jia
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorCorresponding Author
Jianbo Wang
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Core Facility of Wuhan University, Wuhan, 430072 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHuayu Peng
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorYuxuan Hou
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorWeiwei Meng
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorCorresponding Author
He Zheng
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123 China
Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, 518057 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLigong Zhao
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorYing Zhang
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorKaixuan Li
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorPeili Zhao
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorTing Liu
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorShuangfeng Jia
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Search for more papers by this authorCorresponding Author
Jianbo Wang
Country School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan, 430072 China
Core Facility of Wuhan University, Wuhan, 430072 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Deformation twinning merits attention because of its intrinsic importance as a mode of energy dissipation in solids. Herein, through the atomistic electron microscopy observations, the size-dependent twinning mechanisms in refractory body-centered cubic molybdenum nanocrystals (NCs) under tensile loading are shown. Two distinct twinning mechanisms involving the nucleation of coherent and inclined twin boundaries (TBs) are uncovered in NCs with smaller (diameter < ≈5 nm) and larger (diameter > ≈5 nm) diameters, respectively. Interestingly, the ultrahigh pseudo-elastic strain of ≈41% in sub-5 nm-sized crystals is achieved through the reversible twinning mechanism. A typical TB cross-transition mechanism is found to accommodate the NC re-orientation during the pseudo-elastic deformation. More importantly, the effects of different types of TBs on the electrical conductivity based on the repeatable experimental measurements and first-principles calculations are quantified. These size-dependent mechanical and electrical properties may prove essential in advancing the design of next-generation flexible nanoelectronics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202206380-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
smll202206380-sup-0002-MovieS1.mov25.5 MB | Supplemental Movie 1 |
smll202206380-sup-0003-MovieS2.mov3.7 MB | Supplemental Movie 2 |
smll202206380-sup-0004-MovieS3.mov3.6 MB | Supplemental Movie 3 |
smll202206380-sup-0005-MovieS4.mov5.1 MB | Supplemental Movie 4 |
smll202206380-sup-0006-MovieS5.mov8.1 MB | Supplemental Movie 5 |
smll202206380-sup-0007-MovieS6.mov5.6 MB | Supplemental Movie 6 |
smll202206380-sup-0008-MovieS7.mov379 KB | Supplemental Movie 7 |
smll202206380-sup-0009-MovieS8.mov3.6 MB | Supplemental Movie 8 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. Yao, Y. Zhu, Adv. Mater. 2015, 27, 1480; b) M. N. Esfahani, B. E. Alaca, Adv. Eng. Mater. 2019, 21, 1900192.
- 2a) S. Brinckmann, J. Y. Kim, J. R. Greer, Phys. Rev. Lett. 2008, 100, 155502; b) J. Y. Kim, J. R. Greer, Acta Mater. 2009, 57, 5245; c) J. Y. Kim, D. C. Jong, J. R. Greer, Acta Mater. 2010, 58, 2355.
- 3a) A. Cao, J. Appl. Phys. 2010, 108, 113531; b) S. Li, X. Ding, J. Deng, T. Lookman, J. Li, X. Ren, J. Sun, A. Saxena, Phys. Rev. B 2010, 82, 205435; c) P. Wang, W. Chou, A. Nie, Y. Huang, H. Yao, H. Wang, J. Appl. Phys. 2011, 110, 093521; d) Q. Wu, Y. Wang, T. Han, H. Wang, L. Han, L. Bao, J. Eng. Mater. Technol. 2021, 143, 031007.
- 4a) K. Otsuka, C. M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge 1999; b) Y. Tanaka, Y. Himuro, R. Kainuma, Y. Sutou, T. Omori, K. Ishida, Science 2010, 327, 1488.
- 5S. Li, X. Ding, J. Li, X. Ren, J. Sun, E. Ma, Nano Lett. 2010, 10, 1774.
- 6a) J. Wang, Z. Zeng, C. R. Weinberger, Z. Zhang, T. Zhu, S. X. Mao, Nat. Mater. 2015, 14, 594; b) S. Wei, Q. Wang, H. Wei, J. Wang, Mater. Res. Lett. 2019, 7, 210; c) J. Wang, Z. Zeng, M. Wen, Q. Wang, D. Chen, Y. Zhang, P. Wang, H. Wang, Z. Zhang, S. X. Mao, T. Zhu, Sci. Adv. 2020, 6, eaay2792; d) X. Wang, J. Wang, Y. He, C. Wang, L. Zhong, S. X. Mao, Nat. Commun. 2020, 11, 2497; e) Q. Wang, J. Wang, J. Li, Z. Zhang, S. X. Mao, Sci. Adv. 2018, 4, eaas8850.
- 7a) Y. Qian, B. W. Soon, C. Lee, J. Microelectromech. Syst. 2015, 24, 1878; b) G. D. Sim, J. A. Krogstad, K. M. Reddy, K. Y. Xie, G. M. Valentino, T. P. Weihs, K. J. Hemker, Sci. Adv. 2017, 3, e1700685.
- 8a) W. Steinhögl, G. Schindler, G. Steinlesberger, M. Engelhardt, Phys. Rev. B 2002, 66, 075414; b) C. Durkan, M. E. Welland, Phys. Rev. B 2000, 61, 14215; c) R. S. Smith, E. T. Ryan, C. K. Hu, K. Motoyama, N. Lanzillo, D. Metzler, L. Jiang, J. Demarest, R. Quon, L. Gignac, C. Breslin, A. Giannetta, S. Wright, AIP Adv. 2019, 9, 025015.
- 9H. Bishara, S. Lee, T. Brink, M. Ghidelli, G. Dehm, ACS Nano 2021, 15, 16607.
- 10a) H. Zheng, A. Cao, C. R. Weinberger, J. Y. Huang, K. Du, J. Wang, Y. Ma, Y. Xia, S. X. Mao, Nat. Commun. 2010, 1, 144; b) H. Zheng, J. Wang, J. Y. Huang, A. Cao, S. X. Mao, Phys. Rev. Lett. 2012, 109, 225501; c) H. Zheng, J. Wang, J. Y. Huang, J. Wang, S. X. Mao, Nanoscale 2014, 6, 9574; d) H. Sheng, H. Zheng, F. Cao, S. Wu, L. Li, C. Liu, D. Zhao, J. Wang, Nano Res. 2015, 8, 3687; e) P. Zhao, X. Guan, H. Zheng, S. Jia, L. Li, H. Liu, L. Zhao, H. Sheng, W. Meng, Y. Zhuang, J. Wu, L. Li, J. Wang, Phys. Rev. Lett. 2019, 123, 216101; f) L. Li, G. Chen, H. Zheng, W. Meng, S. Jia, L. Zhao, P. Zhao, Y. Zhang, S. Huang, T. Huang, J. Wang, Nat. Commun. 2021, 12, 3863; g) X. D. Han, K. Zheng, Y. F. Zhang, X. N. Zhang, Z. Zhang, Z. L. Wang, Adv. Mater. 2007, 19, 2112; h) J. Zhang, K. Ishizuka, M. Tomitori, T. Arai, Y. Oshima, Nanotechnology 2020, 31, 205706; i) Q. Huang, Z. Chen, M. J. Cabral, F. Wang, S. Zhang, F. Li, Y. Li, S. P. Ringer, H. Luo, Y. W. Mai, X. Liao, Nat. Commun. 2021, 12, 2095.
- 11N. Yang, B. Y. Liu, F. Liu, Z. W. Shan, Scr. Mater. 2022, 206, 114231.
- 12W. Luo, D. Roundy, M. L. Cohen, J. W. Morris, Phys. Rev. B 2002, 66, 094110.
- 13C. Chisholm, H. Bei, M. B. Lowry, J. Oh, S. A. S. Asif, O. L. Warren, Z. W. Shan, E. P. George, A. M. Minor, Acta Mater. 2012, 60, 2258.
- 14M. César, D. Liu, D. Gall, H. Guo, Phys. Rev. Appl. 2014, 2, 044007.
- 15T. Zhou, N. A. Lanzillo, P. Bhosale, D. Gall, R. Quon, AIP Adv. 2018, 8, 055127.
- 16a) B. B. Jiang, A. D. Tu, H. Wang, H. C. Duan, S. Y. He, H. Q. Ye, K. Du, Acta Mater. 2018, 155, 56; b) C. Q. Chen, J. N. Florando, M. Kumar, K. T. Ramesh, K. J. Hemker, Acta Mater. 2014, 69, 114.
- 17a) J. Wang, A. H. M. Faisal, X. Li, Y. Hong, Q. Zhu, H. Bei, Z. Zhang, S. X. Mao, C. R. Weinberger, J. Mater. Sci. Technol. 2022, 106, 33; b) S. Ogata, J. Li, S. Yip, Europhys. Lett. 2004, 68, 405.
- 18Y. Yang, S. Li, X. Ding, J. Sun, E. K. H. Salje, Adv. Funct. Mater. 2015, 26, 760.
- 19N. A. Lanzillo, H. Dixit, E. Milosevic, C. Niu, A. V. Carr, P. Oldiges, M. V. Raymond, J. Cho, T. E. Standaert, V. K. Kamineni, J. Appl. Phys. 2018, 123, 154303.
- 20A. F. Mayadas, M. Shatzkes, Phys. Rev. B 1970, 1, 1382.
- 21D. Gall, J. Appl. Phys. 2016, 119, 085101.
- 22I. Vavra, S. Luby, Thin Solid Films 1980, 69, 169.
- 23W. M. Haynes, CRC Handbook of Chemistry and Physics, 95th ed., CRC press, Boca Raton, FL 2014.
10.1201/b17118 Google Scholar
- 24H. Bishara, M. Ghidelli, G. Dehm, ACS Appl. Electron. Mater. 2020, 2, 2049.
- 25a) L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Science 2004, 304, 422; b) Y. Zhou, X. Gong, B. Xu, M. Hu, J. Appl. Phys. 2017, 122, 085105; c) Y. Zhou, X. Gong, B. Xu, M. Hu, Nanoscale 2017, 9, 9987.
- 26G. Sainath, B. K. Choudhary, Comp. Mater. Sci. 2016, 111, 406.
- 27Y. Zhou, Y. Chen, M. Hu, Sci. Rep. 2016, 6, 24903.
- 28S. Plimpton, J. Comput. Phys. 1995, 117, 1.
- 29A. Stukowski, Modell. Simul. Mater. Sci. Eng. 2010, 18, 015012.
- 30G. J. Ackland, R. Thetford, Philos. Mag. A 1987, 56, 15.
- 31P. Hirel, Comput. Phys. Commun. 2015, 197, 212.
- 32W. G. Hoover, Phys. Rev. A 1985, 31, 1695.
- 33H. Tsuzuki, P. S. Branicio, J. P. Rino, Comput. Phys. Commun. 2007, 177, 518.
- 34F. Shimizu, S. Ogata, J. Li, Mater. Trans. 2007, 48, 2923.
- 35a) J. Wang, F. Sansoz, J. Huang, Y. Liu, S. Sun, Z. Zhang, S. X. Mao, Nat. Commun. 2013, 4, 1742; b) S. Pal, P. N. Babu, B. S. K. Gargeya, C. S. Becquart, Mater. Chem. Phys. 2020, 243, 122593.
- 36D. Şopu, C. Soyarslan, B. Sarac, S. Bargmann, M. Stoica, J. Eckert, Acta Mater. 2016, 106, 199.
- 37a) G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558; b) G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.
- 38a) P. E. Blochl, Phys. Rev. B 1994, 50, 17953; b) G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 39J. L. Cheng, J. Luo, K. S. Yang, Comp. Mater. Sci. 2018, 155, 92.
- 40J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 41J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter 2002, 14, 2745.
- 42M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 2002, 65, 165401.
- 43C. Moreno, M. Vilas-Varela, B. Kretz, A. Garcia-Lekue, V. Costache Marius, M. Paradinas, M. Panighel, G. Ceballos, O. Valenzuela Sergio, D. Peña, A. Mugarza, Science 2018, 360, 199.
- 44S. Afsari, P. Yasini, H. Peng, J. P. Perdew, E. Borguet, Angew. Chem. 2019, 131, 14413.
10.1002/ange.201903898 Google Scholar
- 45T. Zhou, D. Gall, Phys. Rev. B 2018, 97, 165406.
- 46N. Troullier, J. L. Martins, Solid State Commun. 1990, 74, 613.