Synergistic Effect of Surface p-Doping and Passivation Improves the Efficiency, Stability, and Reduces Lead Leakage in All-Inorganic CsPbIBr2-Based Perovskite Solar Cells
Jian He
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorQingrui Wang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorYumeng Xu
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorXing Guo
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorLong Zhou
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorJie Su
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorZhenhua Lin
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorJincheng Zhang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorYue Hao
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorCorresponding Author
Jingjing Chang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
E-mail: [email protected]
Search for more papers by this authorJian He
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorQingrui Wang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorYumeng Xu
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorXing Guo
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorLong Zhou
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorJie Su
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorZhenhua Lin
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorJincheng Zhang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorYue Hao
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Search for more papers by this authorCorresponding Author
Jingjing Chang
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, 2 South Taibai Road, Xi'an, 710071 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Wide-bandgap inorganic cesium lead halide CsPbIBr2 is a popular optoelectronic material that researchers are interested in because of the character that balances the power conversion efficiency and stability of solar cells. It also has great potential in semitransparent solar cells, indoor photovoltaics, and as a subcell for tandem solar cells. Although CsPbIBr2-based devices have achieved good performance, the open-circuit voltage (Voc) of CsPbIBr2-based perovskite solar cells (PSCs) is still lower, and it is critical to further reduce large energy losses (Eloss). Herein, a strategy is proposed for achieving surface p-type doping for CsPbIBr2-based perovskite for the first time, using 1,5-Diaminopentane dihydroiodide at the perovskite surface to improve hole extraction efficiency. Meanwhile, the adjusted energy levels reduce Eloss and improve Voc of the CsPbIBr2 PSCs. Furthermore, the Cs- and Br-vacancies at the interface are filled, reducing structural disorder and defect states and thus improving the quality of the perovskite film. As a result, the target device achieves a high efficiency of 11.02% with a Voc of 1.33 V, which is among the best values. In addition to the improved performance, the stability of the target device under various conditions is enhanced, and the lead leakage is effectively suppressed.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202205962-sup-0001-SuppMat.pdf767 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347, 519.
- 2Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 2015, 347, 967.
- 3J. Chen, S. G. Kim, N. G. Park, Adv. Mater. 2018, 30, 1801948.
- 4J. Di, H. Li, J. Su, H. Yuan, Z. Lin, K. Zhao, J. Chang, Y. Hao, Adv. Sci. 2022, 9, 2103482.
- 5L. Zhou, J. Su, Z. Lin, X. Guo, J. Ma, T. Li, J. Zhang, J. Chang, Y. Hao, Research 2021, 2021, 9836752.
- 6T. Bu, J. Li, H. Li, C. Tian, J. Su, G. Tong, L. K. Ono, C. Wang, Z. Lin, N. Chai, X. L. Zhang, J. Chang, J. Lu, J. Zhong, W. Huang, Y. Qi, Y. B. Cheng, F. Huang, Science 2021, 372, 1327.
- 7A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 8 NREL, Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL, 2022.
- 9L. Yan, Q. Xue, M. Liu, Z. Zhu, J. Tian, Z. Li, Z. Chen, Z. Chen, H. Yan, H.-L. Yip, Y. Cao, Adv. Mater. 2018, 30, 1802509.
- 10L. Li, Y. Wang, X. Wang, R. Lin, X. Luo, Z. Liu, K. Zhou, S. Xiong, Q. Bao, G. Chen, Y. Tian, Y. Deng, K. Xiao, J. Wu, M. I. Saidaminov, H. Lin, C. Ma, Z. Zhao, Y. Wu, L. Zhang, H. Tan, Nat. Energy 2022, 7, 708
- 11S. A. Hashemi, S. Ramakrishna, A. G. Aberle, Energy Environ. Sci. 2020, 13, 685.
- 12K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin, H. T. Nguyen, J. Wen, M. Wei, V. Yeddu, M. I. Saidaminov, Y. Gao, X. Luo, Y. Wang, H. Gao, C. Zhang, J. Xu, J. Zhu, E. H. Sargent, H. Tan, Nat. Energy 2020, 5, 870.
- 13J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, M. A. Hope, Y. Yang, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, J. Y. Kim, Nature 2020, 592, 381.
- 14T. A. Berhe, W. N. Su, C. H. Chen, C. J. Pan, J. H. Cheng, H. M. Chen, M. C. Tsai, L. Y. Chen, A. A. Dubale, B. J. Hwang, Energy Environ. Sci. 2016, 9, 323.
- 15B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, H. G. Boyen, Adv. Energy Mater. 2015, 5, 1500477.
- 16H. Lu, A. Krishna, S. M. Zakeeruddin, M. Grätzel, A. Hagfeldt, iScience 2020, 23, 101359.
- 17X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Y. Lin, D.-J. Xue, B. Chen, A. K. Johnston, N. Wei, M. N. Hedhili, M. Wei, A. Y. Alsalloum, P. Maity, B. Turedi, C. Yang, D. Baran, T. D. Anthopoulos, Y. Han, Z.-H. Lu, O. F. Mohammed, F. Gao, E. H. Sargent, O. M. Bakr, Nat. Energy 2020, 5, 131.
- 18W. Zhu, S. Wang, X. Zhang, A. Wang, C. Wu, F. Hao, Small 2022, 18, 2105783.
- 19C. Wang, Y. Dou, Y. Wang, F. Huang, Z. Ku, J. Lu, Y.-B. Cheng, ACS Appl. Mater. Interfaces 2022, 14, 22601.
- 20W. Chen, D. Li, X. Chen, H. Chen, S. Liu, H. Yang, X. Li, Y. Shen, X. Ou, Y. Yang, L. Jiang, Y. Li, Y. Li, Adv. Funct. Mater. 2022, 32, 2109321.
- 21N. A. N. Ouedraogo, Y. Chen, Y. Y. Xiao, Q. Meng, C. B. Han, H. Yan, Y. Zhang, Nano Energy 2020, 67, 104249.
- 22R. He, S. Ren, C. Chen, Z. Yi, Y. Luo, H. Lai, W. Wang, G. Zeng, X. Hao, Y. Wang, J. Zhang, C. Wang, L. Wu, F. Fu, D. Zhao, Energy Environ. Sci. 2021, 14, 5723.
- 23J. Ma, M. Qin, P. Li, L. Han, Y. Zhang, Y. Song, Energy Environ. Sci. 2022, 15, 413.
- 24J. Liang, J. Liu, Z. Jin, Sol. RRL 2017, 1, 1700086.
- 25S. Tan, B. Yu, Y. Cui, F. Meng, C. Huang, Y. Li, Z. Chen, H. Wu, J. Shi, Y. Luo, D. Li, Q. Meng, Angew. Chem. Int. Ed. 2022, 61, e202201300.
- 26Y. Wang, M. I. Dar, L. K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao, Y. Qi, M. Grätzel, Y. Zhao, Science 2019, 365, 591.
- 27A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Angew. Chem. Int. Ed. Engl. 2015, 127, 15644.
10.1002/ange.201508276 Google Scholar
- 28D. Xie, L. Wei, M. Xie, L. Jiang, J. Yang, J. He, J. Jiang, Adv. Funct. Mater. 2021, 31, 2010655.
- 29P. Zhang, Y. Hua, Y. Xu, Q. Sun, X. Li, F. Cui, L. Liu, Y. Bi, G. Zhang, X. Tao, Adv. Mater. 2022, 34, 2106562.
- 30Q. Mo, C. Chen, W. Cai, S. Zhao, D. Yan, Z. Zang, Laser Photonics Rev. 2021, 15, 2100278.
- 31J. Du, J. Duan, X. Yang, Y. Duan, Q. Zhou, Q. Tang, Angew. Chem. 2021, 133, 10702.
10.1002/ange.202016703 Google Scholar
- 32Y. Long, C. Wang, X. Liu, J. Wang, S. Fu, J. Zhang, Z. Hu, Y. Zhu, J. Mater. Chem. C 2021, 9, 2145.
- 33J. Du, J. Duan, Q. Guo, Y. Duan, X. Yang, Q. Zhou, Q. Tang, J. Mater. Chem. A 2021, 9, 25418.
- 34W. S. Subhani, K. Wang, M. Du, X. Wang, S. F. Liu, Adv. Energy Mater. 2019, 9, 1803785.
- 35H. Zhang, Z. Yan, Y. Xu, X. Wang, J. Wu, Z. Lan, Adv. Mater. Interfaces 2022, 9, 2.
- 36F. Yan, P. Yang, J. Li, Q. Guo, Q. Zhang, J. Zhang, Y. Duan, J. Duan, Q. Tang, Chem. Eng. J. 2022, 430, 132781.
- 37Q. Wang, Y. Xu, L. Zhang, P. Niu, R. Zhou, M. Lyu, G. Zhang, H. Lu, J. Zhu, Sustainable Energy Fuels 2022, 6, 2692.
- 38L. Hu, L. Duan, Y. Yao, W. Chen, Z. Zhou, C. Cazorla, C. H. Lin, X. Guan, X. Geng, F. Wang, T. Wan, S. Wu, S. Cheong, R. D. Tilley, S. Liu, J. Yuan, D. Chu, T. Wu, S. Huang, Adv. Sci. 2022, 9, 2102258.
- 39J. He, J. Su, J. Di, Z. Lin, S. Zhang, J. Ma, J. Zhang, S. Liu, J. Chang, Y. Hao, Nano Energy 2022, 94, 106960.
- 40Arramel, H. Pan, A. Xie, S. Hou, X. Yin, C. S. Tang, N. T. Hoa, M. D. Birowosuto, H. Wang, C. Dang, A. Rusydi, A. T. S. Wee, J. Wu, Nano Res. 2019, 12, 77.
- 41E. H. Jung, B. Chen, K. Bertens, M. Vafaie, S. Teale, A. Proppe, Y. Hou, T. Zhu, C. Zheng, E. H. Sargent, ACS Energy Lett. 2020, 5, 2796.
- 42B. Tu, Y. Shao, W. Chen, Y. Wu, X. Li, Y. He, J. Li, F. Liu, Z. Zhang, Y. Lin, X. Lan, L. Xu, X. Shi, A. M. C. Ng, H. Li, L. W. Chung, A. B. Djurišić, Z. He, Adv. Mater. 2019, 31, 1805944.
- 43N. K. Noel, S. N. Habisreutinger, A. Pellaroque, F. Pulvirenti, B. Wenger, F. Zhang, Y. H. Lin, O. G. Reid, J. Leisen, Y. Zhang, S. Barlow, S. R. Marder, A. Kahn, H. J. Snaith, C. B. Arnold, B. P. Rand, Energy Environ. Sci. 2019, 12, 3063.
- 44X. Guo, J. Su, Z. Lin, X. Wang, Q. Wang, Z. Zeng, J. Chang, Y. Hao, iScience 2021, 24, 102276.
- 45J. Euvrard, Y. Yan, D. B. Mitzi, Nat. Rev. Mater. 2021, 6, 531.
- 46Y. Wang, J. Yuan, X. Zhang, X. Ling, B. W. Larson, Q. Zhao, Y. Yang, Y. Shi, J. M. Luther, W. Ma, Adv. Mater. 2020, 32, 2000449.
- 47Y. Zhao, P. Zhu, S. Huang, S. Tan, M. Wang, R. Wang, J. Xue, T. H. Han, S. J. Lee, A. Zhang, T. Huang, P. Cheng, D. Meng, J. W. Lee, J. Marian, J. Zhu, Y. Yang, J. Am. Chem. Soc. 2020, 142, 20071.
- 48R. Wang, J. Xue, K. L. Wang, Z. K. Wang, Y. Luo, D. Fenning, G. Xu, S. Nuryyeva, T. Huang, Y. Zhao, J. L. Yang, J. Zhu, M. Wang, S. Tan, I. Yavuz, K. N. Houk, Y. Yang, Science 2019, 366, 1509.
- 49D. Jia, J. Chen, M. Yu, J. Liu, E. M. J. Johansson, A. Hagfeldt, X. Zhang, Small 2020, 16, 2001772.
- 50W. Q. Wu, P. N. Rudd, Z. Ni, C. H. Van Brackle, H. Wei, Q. Wang, B. R. Ecker, Y. Gao, J. Huang, J. Am. Chem. Soc. 2020, 142, 3989.
- 51S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X. C. Zeng, J. Huang, J. Am. Chem. Soc. 2019, 141, 5781.
- 52J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng, Z. Wu, Y. Jiang, L. K. Ono, Y. Qi, Adv. Energy Mater. 2018, 8, 1800504.
- 53S. Xiong, Y. Dai, J. Yang, W. Xiao, D. Li, X. Liu, L. Ding, P. Gao, M. Fahlman, Q. Bao, Nano Energy 2021, 79, 105505.
- 54Q. Jiang, Z. Ni, G. Xu, Y. Lin, P. N. Rudd, R. Xue, Y. Li, Y. Li, Y. Gao, J. Huang, Adv. Mater. 2020, 32, 2001581.
- 55J. Ma, J. Su, Z. Lin, J. He, L. Zhou, T. Li, J. Zhang, S. Liu, J. Chang, Y. Hao, Energy Environ. Mater. 2021, 5, 637.
10.1002/eem2.12212 Google Scholar
- 56J. Ma, Z. Lin, X. Guo, L. Zhou, J. He, Z. Yang, J. Zhang, Y. Hao, S. Liu, J. Chang, J. Energy Chem. 2021, 63, 558.
- 57J. He, J. Su, Z. Lin, J. Ma, L. Zhou, S. Zhang, S. Liu, J. Chang, Y. Hao, Adv. Sci. 2021, 8, 2101367.
- 58Z. Yang, A. Surrente, K. Galkowski, N. Bruyant, D. K. Maude, A. A. Haghighirad, H. J. Snaith, P. Plochocka, R. J. Nicholas, J. Phys. Chem. Lett. 2017, 8, 1851.
- 59C. Bi, X. Zheng, B. Chen, H. Wei, J. Huang, ACS Energy Lett. 2017, 2, 1400.
- 60C. Luo, Y. Zhao, X. Wang, F. Gao, Q. Zhao, Adv. Mater. 2021, 33, 2103231.
- 61J. Wu, J. Shi, Y. Li, H. Li, H. Wu, Y. Luo, D. Li, Q. Meng, Adv. Energy Mater. 2019, 9, 1901352.
- 62S. H. Cho, J. Byeon, K. Jeong, J. Hwang, H. Lee, J. Jang, J. Lee, T. Kim, K. Kim, M. Choi, Y. S. Lee, Adv. Energy Mater. 2021, 11, 2100555.
- 63X. Wei, M. Xiao, B. Wang, C. Wang, Y. Li, J. Dou, Z. Cui, J. Dou, H. Wang, S. Ma, C. Zhu, G. Yuan, N. Yang, T. Song, H. Zhou, H. Chen, Y. Bai, Q. Chen, Angew. Chem., Int. Ed. Engl. 2022, 61, 202204314
- 64X. Li, F. Zhang, H. He, J. J. Berry, K. Zhu, T. Xu, Nature 2020, 578, 555.
- 65Q. Wang, Z. Lin, J. Su, Y. Xu, X. Guo, Y. Li, M. Zhang, J. Zhang, J. Chang, Y. Hao, EcoMat 2022, 4, 12185.
- 66P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
- 67G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 68G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 69W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
- 70G. Kresse, D. P. Joubert, Phys. Rev. B 1999, 59, 1758.
- 71P. E. Blochl, Phys. Rev. B 1994, 50, 17953.
- 72J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 73G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.
- 74G. Henkelman, H. Jónsson, J. Chem. Phys. 2000, 113, 9978.